scholarly journals A novel amended nitrification inhibitor confers an enhanced suppression role in the nitrification of ammonium in soil

Author(s):  
Changqing Guo ◽  
Hongmei Wang ◽  
Dianbo Zou ◽  
Yue Wang ◽  
Xiaori Han

Abstract Purpose Nitrification inhibitor plays an important regulatory role in inhibiting the nitrification of ammonium in soils. However, most of nitrification inhibitors lack the sustainable effects in suppressing the nitrification of ammonium. In this study, a novel DMS nitrification inhibitor was prepared and tested to explore its lasting effect of nitrification suppression in black soil. Materials and methods Both culture experiments and field trial were performed in black soils. Three kinds of nitrification inhibitors (NIs), dicyandiamide (DCD) with low bioactivity, 3,4-dimethylpyrazole phosphate (DMPP) with high bioactivity, and a novel 3,4-dimethylpyrazole sulfate zinc (DMS) with long half-life, were applied into soils, respectively, and the abundance changes of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were investigated; then, the accumulation changes of inorganic nitrogen, nitrogen use efficiency, and crop yields were furtherly evaluated. Results and discussions A novel DMS nitrification inhibitor with high activity and long half-life maintained a persistent effect of nitrification suppression, and remarkably increased the accumulation of ammonium nitrogen in soil, thus improving nitrogen use efficiency and crop yields. This study implies that lowering the nitrogen loss of nitrification-triggered in soil is of great importance for improving nitrogen use efficiency. Conclusions This study provided an insight into the sustainable nitrification suppression of a novel DMS nitrification inhibitor under excessive application of nitrogen fertilizer in black soils. Compared with improving the activity, reasonably prolonging the validity of nitrification inhibitors in soil is a more important strategy increasing the sustainable effects of nitrification inhibition, and the survival period of nitrification inhibitors in soil should be a crucial factor improving nitrogen use efficiency.

2021 ◽  
Author(s):  
Yabo Zhang ◽  
Feng Liu ◽  
Juntao Wang ◽  
Hangwei Hu ◽  
Jizheng He ◽  
...  

Nitrification inhibitor and straw incorporation are widely used to improve crop nitrogen use efficiency in agricultural soil, but their effects on nitrous oxide (N2O) emission across different soil types and the microbial mechanisms remain less understood. In this study, we used controlled experiment and DNA-based molecular analysis to study how nitrification inhibitor (dicyandiamide, DCD) and straw incorporation affect soil nitrogen balance, N2O emission and microbial nitrifiers/denitrifers in three distinct agricultural soils (the black, fluvo-aquic and red soils) across China. Both DCD and straw incorporation improved nitrogen balance by increasing NH4+ and decreasing NO3- in all soils. DCD tended to decrease N2O emission from all soils especially the Fluvo-aquic one, while straw incorporation reduced N2O emission only in the fluvo-aquic soil but increased N2O emission in the other two especially the red soil (by ~600%). T-RFLP analysis revealed that the denitriers community structure are distinct among the three soils, but was not strongly affected by DCD or straw incorporation. qPCR analysis revealed that DCD or straw incorporation had no significant effect on nitrifier abundance, but increased nitrous oxide reductase nosZ gene abundance in the black/fluvo-aquic soil rather than the red soil. Structural equational modelling further confirmed that, when accounting for treatments and soil properties, nosZ gene abundance is the only biological factor significantly determined N2O emission in different soil types. Taken together, our work advanced the knowledge on the agricultural practices and N2O emission in cropland soils, and suggested that straw incorporation may not be a good choice for the red and black soil areas; management practices should be used as per soil type to balance between nitrogen use efficiency and N2O emission.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Wei Hua ◽  
Peiyu Luo ◽  
Ning An ◽  
Fangfang Cai ◽  
Shiyu Zhang ◽  
...  

Abstract It is great of importance to better understand the effects of the long-term fertilization on crop yields, soil properties and nitrogen (N) use efficiency in a rotation cropping cultivation system under the conditions of frequent soil disturbance. Therefore, a long-term field experiment of 40 years under soybean-maize rotation was performed in a brown soil to investigate the effects of inorganic and organic fertilizers on crop yields, soil properties and nitrogen use efficiency. Equal amounts of 15N-labelled urea with 20.8% of atom were used and uniformly applied into the micro-plots of the treatments with N, NPK, M1NPK, M2NPK before soybean sowing, respectively. Analyses showed that a total of 18.3–32.5% of applied N fertilizer was taken up by crops in the first soybean growing season, and that the application of manure combining with chemical fertilizer M2NPK demonstrated the highest rate of 15N recovery and increased soil organic matter (SOM) and Olsen phosphorus (Olsen P), thereby sustaining a higher crop yield and alleviating soil acidification. Data also showed that no significant difference was observed in the 15N recovery from residue N in the second maize season plant despite of showing a lower 15N recovery compared with the first soybean season. The recovery rates of 15N in soils were ranged from 38.2 to 49.7% by the end of the second cropping season, and the residuals of 15N distribution in soil layers revealed significant differences. The M2NPK treatment demonstrated the highest residual amounts of 15N, and a total of 50% residual 15N were distributed in a soil layer of 0–20 cm. Our results showed that long-term application of organic fertilizers could effectively promote N use efficiency by increasing SOM and improving soil fertility, and thus leading to an increase in crop yields. This study will provide a scientific reference and guidance for improving soil sustainable productivity by manure application.


2013 ◽  
Vol 10 (4) ◽  
pp. 2427-2437 ◽  
Author(s):  
C. Liu ◽  
K. Wang ◽  
X. Zheng

Abstract. The application of nitrification inhibitors together with ammonium-based fertilizers is proposed as a potent method to decrease nitrous oxide (N2O) emission while promoting crop yield and nitrogen use efficiency in fertilized agricultural fields. To evaluate the effects of nitrification inhibitors, we conducted year-round measurements of N2O fluxes, yield, aboveground biomass, plant carbon and nitrogen contents, soil inorganic nitrogen and dissolved organic carbon contents and the main environmental factors for urea (U), urea &amp;plus; dicyandiamide (DCD) and urea &amp;plus; 3,4-dimethylpyrazol phosphate (DMPP) treatments in a wheat–maize rotation field. The cumulative N2O emissions were calculated to be 4.49 &amp;pm; 0.21, 2.93 &amp;pm; 0.06 and 2.78 &amp;pm; 0.16 kg N ha−1 yr−1 for the U, DCD and DMPP treatments, respectively. Therefore, the DCD and DMPP treatments significantly decreased the annual emissions by 35% and 38%, respectively (p < 0.01). The variations of soil temperature, moisture and inorganic nitrogen content regulated the seasonal fluctuation of N2O emissions. When the emissions presented clearly temporal variations, high-frequency measurements or optimized sampling schedule for intermittent measurements would likely provide more accurate estimations of annual cumulative emission and treatment effect. The application of nitrification inhibitors significantly increased the soil inorganic nitrogen content (p < 0.01); shifted the main soil inorganic nitrogen form from nitrate to ammonium; and tended to increase the dissolved organic carbon content, crop yield, aboveground biomass and nitrogen uptake by aboveground plant. The results demonstrate the roles the nitrification inhibitors play in enhancing yield and nitrogen use efficiency and reducing N2O emission from the wheat–maize cropping system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Niguss Solomon Hailegnaw ◽  
Filip Mercl ◽  
Martin Kulhánek ◽  
Jiřina Száková ◽  
Pavel Tlustoš

AbstractThis study aimed on the increasing nitrogen use efficiency (NUE) of maize via the use of high temperature produced biochar (700 °C). Maize was grown to maturity on two contrasting soils (acidic Cambisol and neutral Chernozem) in pots with a treatment of biochar co-applied with ammonium sulphate stabilised by a nitrification inhibitor (3,4-dimethylpyrazole-phosphate, DMPP) or un-stabilised. The combination of biochar with ammonium sulphate containing DMPP increased maize biomass yield up to 14%, N uptake up to 34% and NUE up to 13.7% compared to the sole application of ammonium sulphate containing DMPP. However, the combination of biochar with un-stabilised ammonium sulphate (without DMPP) had a soil-specific influence and increased maize biomass only by 3.8%, N uptake by 27% and NUE by 11% only in acidic Cambisol. Further, the biochar was able to increase the uptake of phosphorus (P) and potassium (K) in both stabilised and un-stabilised treatments of ammonium sulphate. Generally, this study demonstrated a superior effect from the combined application of biochar with ammonium sulphate containing DMPP, which improved NUE, uptake of P, K and increased maize biomass yield. Such a combination may lead to higher efficiency of fertilisation practices and reduce the amount of N fertiliser to be applied.


Sign in / Sign up

Export Citation Format

Share Document