Local structure engineering for active sites in fuel cell electrocatalysts

2020 ◽  
Vol 63 (11) ◽  
pp. 1543-1556
Author(s):  
Han Cheng ◽  
Renjie Gui ◽  
Si Liu ◽  
Yi Xie ◽  
Changzheng Wu
Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 202
Author(s):  
Yexin Dai ◽  
Jie Ding ◽  
Jingyu Li ◽  
Yang Li ◽  
Yanping Zong ◽  
...  

In this work, reduced graphene oxide (rGO) nanocomposites doped with nitrogen (N), sulfur (S) and transitional metal (Ni, Co, Fe) were synthesized by using a simple one-step in-situ hydrothermal approach. Electrochemical characterization showed that rGO-NS-Ni was the most prominent catalyst for glucose oxidation. The current density of the direct glucose alkaline fuel cell (DGAFC) with rGO-NS-Ni as the anode catalyst reached 148.0 mA/cm2, which was 40.82% higher than the blank group. The DGAFC exhibited a maximum power density of 48 W/m2, which was more than 2.08 folds than that of blank group. The catalyst was further characterized by SEM, XPS and Raman. It was speculated that the boosted performance was due to the synergistic effect of N, S-doped rGO and the metallic redox couples, (Ni2+/Ni3+, Co2+/Co3+ and Fe2+/Fe3+), which created more active sites and accelerated electron transfer. This research can provide insights for the development of environmental benign catalysts and promote the application of the DGAFCs.


2021 ◽  
Author(s):  
Weishi Gu ◽  
Zhongqin Pan ◽  
Han Tao ◽  
Yanling Guo ◽  
Jun Pu ◽  
...  

Taking advantage of micro/nano structure engineering and surface boron modulation, we developed a binder-free and support-free electrode to enrich and optimize active sites of Ni.


2021 ◽  
Vol 11 (8) ◽  
pp. 2957-2963
Author(s):  
Jian Wang ◽  
Guangping Wu ◽  
Wenhui Xuan ◽  
Lishan Peng ◽  
Yong Feng ◽  
...  

Rationally designing the structure of catalyst layer in MEA to achieve the dispersion of active sites at the cross of three-phase field and the effective transfer network paths for protons through catalysts and catalyst layer.


2020 ◽  
Vol 4 (4) ◽  
pp. 1747-1753 ◽  
Author(s):  
Yuanyuan Ma ◽  
Wenjie Zang ◽  
Afriyanti Sumboja ◽  
Lu Mao ◽  
Ximeng Liu ◽  
...  

Hollow structuring of active components is an effective strategy to improve the kinetics of oxygen electrode catalysts, arising from the increased the active surface area, the defects on the exposed surface, and the accessible active sites.


2021 ◽  
Author(s):  
Minhua Shao ◽  
Fei Xiao ◽  
Qi Wang ◽  
Gui-Liang Xu ◽  
Xueping Qin ◽  
...  

Abstract Proton exchange membrane fuel cell converts hydrogen and oxygen into electricity with zero emission1. The high cost and low durability of Pt-based electrocatalysts for oxygen reduction reaction hinder its wide applications2,3. The development of non-precious metal electrocatalysts also reaches the bottleneck because of the low activity and durability4,5. Here we rationally design a hybrid electrocatalyst consisting of atomically dispersed Pt and Fe single atoms and intermetallic PtFe alloy nanoparticles. The Pt mass activity of the hybrid catalyst is 3.5 times higher than that of commercial Pt/C in a fuel cell. More importantly, the fuel cell with an ultra-low Pt loading in the cathode (0.015 mgPt cm-2) shows unprecedented durability, with 93.6% activity retention after 100,000 cycles and no noticeable current drop at 0.6 V for at least 206 h. These results highlight the importance of the synergistic effects among active sites in hybrid electrocatalysts and provide an alternative way to design more active and durable low-Pt electrocatalysts for electrochemical devices.


Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1368 ◽  
Author(s):  
Yen-Zen Wang ◽  
Wen-Yao Huang ◽  
Tar-Hwa Hsieh ◽  
Li-Cheng Jheng ◽  
Ko-Shan Ho ◽  
...  

Calcinated tris(ethylenediamine)iron(III) chloride was used as a non-precious metal catalyst (NPMCs) for a proton exchanged membrane fuel cell (PEMFC) under the protection of polyaniline (PANI), which behaves as both nitrogen source and carbon supporter. The optimal ratio of FeCl3/EDA was found to be close to 1/3 under the consideration of the electrocatalytic performance, such as better oxygen reduction reaction (ORR) and higher power density. Two-stage calcination, one at 900 °C in N2 and the other at 800 °C in mixed gases of N2 and NH3, result in an FeNxC catalyst (FeNC-900-800-A) with pretty high specific surface area of 1098 m2·g−1 covered with both micro- and mesopores. The ORR active sites focused mainly on Fe–Nx bonding made of various pyridinic, pyrrolic, and graphitic N-s after calcination. The max. power density reaches 140 mW·cm−2 for FeNC-900-800-A, which is superior to other FeNxC catalysts, experiencing only one-stage calcination in N2. The FeNxC demonstrates only 10 mV half-wave-voltage (HWV) loss at 1600 rpm after 1000 redox cycles, as compared to be 27 mV for commercial Pt/C catalyst in the durability test.


2012 ◽  
Vol 116 (42) ◽  
pp. 22386-22398 ◽  
Author(s):  
Ilenia Rossetti ◽  
Giulia Fulvia Mancini ◽  
Paolo Ghigna ◽  
Marco Scavini ◽  
Marco Piumetti ◽  
...  
Keyword(s):  

2021 ◽  
Vol 4 (01) ◽  
pp. 26-35
Author(s):  
Mostafa Hassani ◽  
Mohsen Zeeb ◽  
Amirhossein Monzavi ◽  
Zahra Khodadadi ◽  
Mohammad Reza Kalaee

Microbial fuel cells (MFCs) are a green and efficient approach to treat wastewater and generate energy. According to the present research, a novel MFC fabricate based on graphite rod electrodes (GRE). The surface of this cathode was modified with iron-functionalized ZSM-5 nanozeolite. The characterization of Iron doping in nanozeolite structure and electrode surface modification were obtained by XRD and EDX analyzes, respectively. Chemical analysis of square wave (Sqw) and cyclic voltammetry (CV) determined for all of three graphite electrodes (G, G-Z and G-Z/Fe) with higher efficiency. Morover, the comparison of experimental results from 72-hour fuel cell steering was evaluated and showed that the G-Z/Fe graphite electrodes has maximum efficiency and effectiveness. Thus, the efficiency of fuel cell output current and residual chemical oxygen demand removal with this electrode increased up to 21.8% and 36.9%, respectively. The effiucient recovery for the modification of the graphite electrode was achieved due to increasing of the specific surface area, the active sites of functionalized nanozeolite and the elevation in the electrical conductivity through the presence of iron particles doped in the ZSM-5/Fe nanocatalyst structure. Therefore, the G-Z/Fe cathode can be used as a favorite electrode for the construction of MFCs based on GRE .


Sign in / Sign up

Export Citation Format

Share Document