Net ecosystem CO2 exchange and controlling factors in a steppe—Kobresia meadow on the Tibetan Plateau

2006 ◽  
Vol 49 (S2) ◽  
pp. 207-218 ◽  
Author(s):  
Peili Shi ◽  
Xiaomin Sun ◽  
Lingling Xu ◽  
Xianzhou Zhang ◽  
Yongtao He ◽  
...  
PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0170963 ◽  
Author(s):  
Bin Wang ◽  
Haiyan Jin ◽  
Qi Li ◽  
Dongdong Chen ◽  
Liang Zhao ◽  
...  

2009 ◽  
Vol 15 (12) ◽  
pp. 3001-3017 ◽  
Author(s):  
FRANK BAUMANN ◽  
JIN-SHENG HE ◽  
KARSTEN SCHMIDT ◽  
PETER KÜHN ◽  
THOMAS SCHOLTEN

Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 987 ◽  
Author(s):  
Nie ◽  
Wang ◽  
Yang ◽  
Zhou

Litter is an important component of terrestrial ecosystems and plays a significant role in carbon cycles. Quantifying regional-scale patterns of litter standing crop distribution will improve our understanding of the mechanisms of the terrestrial carbon cycle, and thus enable accurate predictions of the responses of the terrestrial carbon cycle to future climate change. In this study, we aimed to estimate the storage and climatic controlling factors of litter standing crop carbon in the Tibetan Plateau shrublands. We investigated litter standing crop carbon storage and its controlling factors, using a litter survey at 65 shrublands sites across the Tibetan Plateau from 2011–2013. Ordinary least squares regression analyses were conducted to estimate the relationships between litter standing crop carbon, longitude, and latitude. Multiple linear regressions were used to evaluate relationships among litter standing crop carbon, mean annual temperature (MAT), mean annual precipitation (MAP), and aboveground biomass. The litter standing crop carbon storage was 10.93 Tg C, 7.40 Tg C, and 3.53 Tg C in desert shrublands and alpine shrublands, respectively. Litter standing crop carbon decreased with longitude, and was stable with increasing latitude. Most (80%) of the litter standing crop was stored in branches, with only 20% stored in foliage in the shrublands on the Tibetan Plateau. The conversion coefficient was 0.44 for litter standing crop to litter standing crop carbon, and 0.39 and 0.45 for foliage and branch litter standing crop to foliage and branch litter standing crop carbon, respectively. Aboveground biomass can accelerate more inputs of litter and has a positive effect on litter standing crop carbon. MAT had a positive effect on litter standing crop carbon due to stimulating more input of aboveground biomass. However, MAP had a negative relationship with litter standing crop carbon by enhancing litter decomposition.


2021 ◽  
Author(s):  
Shixue Li ◽  
Tomonori Sato ◽  
Tetsu Nakamura

<p>This study investigates the controlling factors of the interannual variability of Tibetan Plateau snow cover (TPSC) in winter. Since snow observation in Tibetan Plateau is limited in space and time, high-resolution multi-satellite data for TPSC were analyzed during 1982-2016. In addition, a large ensemble AGCM experiment from d4PDF (hereafter, HIST), driven by observed SST and anthropogenic forcings were analyzed during 1951-2010 to compare the contributions arising from internal variability and external forcings including the change in greenhouse gases (GHGs) concentration on TPSC variation. In this study TPSC fraction (hereafter, TPSCF) is defined as the percentage of the snow-covered area over the Tibetan Plateau. For both observation and HIST, high and low TPSCF years determined by the standardized January-March TPSCF were analyzed. The range of interannual TPSCF variation (i.e., TPSCF difference between high and low TPSCF years) is about 11% in both observation and the model, suggesting the AGCM well reproduced the TPSCF variability in the interannual timescale. </p><p>We found that high TPSCF is linked to a positive-AO-like pattern. The interannual variation of the observed AO index and TPSCF are significantly correlated. In d4PDF high TPSCF more likely appears with a higher (positive) AO index and vice versa. In high TPSCF years, the subtropical jet is strengthened, which significantly enhances zonal water vapor flux reaching the plateau supporting more precipitation. Another interesting result is a disagreement for ENSO’s contribution to TPSC appears between observation and HIST. However, several members in HIST show a feature close to the observation, in which TPSCF anomalies are not sensitive to the El Niño/La Niña events. Thus, this weak linkage between ENSO and TPSCF is more likely due to the limited cases of observations rather than the model bias. Finally, by comparing HIST and non-warming experiments (NAT), we found historical global warming has decreased the snow-to-rain ratio over TP. Nonetheless, increased precipitation compensates for it. As a result, the impact of historical global warming on TPSCF could be considered negligibly weak.</p>


2020 ◽  
Author(s):  
Minhui Li ◽  
Baosheng Wu ◽  
Yi Chen

<p><span><span lang="EN-US">Tibetan Plateau is the source of many major rivers in Asia. Drainage networks of these rivers vary in shapes and features due to complex climatic and geomorphic conditions. In this study, we extracted drainage networks in the source area of Yellow River, Yangtze River and Yarlung Zangbo River from 90-m-resolution SRTM DEM. We chose 62 sub-basins in the Yellow River, 96 sub-basins in the Yangtze River and 120 sub-basins in the Yarlung Zangbo River and tested self-similarity of drainage networks in two ways. First, we tested self-similarity for traditional Horton laws. Based on Horton-Strahler order, the results indicate that rivers with low levels generally obey Horton laws while rivers with high levels show deviation. Second, we tested statistical self-similarity in the topology of river networks. Random self-similar networks (RSN) model which combines self-similarity and randomness shows topological features of river networks statistically. Real networks were decomposed into generators that produce the network. The results demonstrate that the generators of RSN model obey a geometric distribution and the parameter p, which describes the distribution of generators, ranges from 0.401 to 0.587. Self-similarity holds in a statistical sense in the selected basins in the Tibetan Plateau. Motivated by the need to understand the controlling factors of drainage networks in Tibetan Plateau, these sub-basins were divided into groups according to possible controlling factors, such as climate, tectonic and geology. Analysis shows that Horton ratios and generators of low-level rivers are affected by precipitation, but the relationship between these parameters of high-level rivers and these factors is not obvious. In order to further explore the controlling factors, we analyzed three typical rivers (Tao River, Yalong River and Lasa River) in more details. For Yalong River, Tao River and Lasa River, bifurcation ratios are 4.46, 5.00 and 4.37 while the length ratios are 2.35, 2.71 and 2.30 respectively. The Normalized Concavity Index for Tao River, Lasa River and Yalong River are -0.129, -0.082 and 0.009</span> <span lang="EN-US">respectively, indicating that the profiles of the first two rivers are concave-up and that of Yalong River is convex-up. The influence of climate is well reflected in the structure and longitudinal profiles of the drainage network in the Tibetan Plateau. Strong tectonic activities in the eastern margin of the Tibetan Plateau destroy the network of Yalong River, resulting in river capture to maintain equilibrium.</span></span></p>


2006 ◽  
Vol 12 (10) ◽  
pp. 1940-1953 ◽  
Author(s):  
LIANG ZHAO ◽  
YINGNIAN LI ◽  
SHIXIAO XU ◽  
HUAKUN ZHOU ◽  
SONG GU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document