scholarly journals Hydrochemistry and its controlling factors of rivers in the source region of the Yangtze River on the Tibetan Plateau

2015 ◽  
Vol 155 ◽  
pp. 76-83 ◽  
Author(s):  
Liguang Jiang ◽  
Zhijun Yao ◽  
Zhaofei Liu ◽  
Rui Wang ◽  
Shanshan Wu
2021 ◽  
Vol 34 (2) ◽  
pp. 607-620
Author(s):  
Yang Zhao ◽  
Deliang Chen ◽  
Yi Deng ◽  
Seok-Woo Son ◽  
Xiang Wang ◽  
...  

AbstractThis study investigates eastward-moving summer heavy rainfall events in the lower reaches of the Yangtze River (LRYR), which are associated with the Tibetan Plateau (TP) vortices. On the basis of rainfall data from gauges and additional atmospheric data from ERA-Interim, the dynamic and thermodynamic effects of moisture transport and diabatic heating are estimated to determine the physical mechanisms that support the eastward-moving heavy rainfall events. As the rainband moves eastward, it is accompanied by anomalous cyclonic circulation in the upper and middle troposphere and enhanced vertical motion throughout the troposphere. In particular, the rainfall region is located in the fore of the upper-level trough, which is ideal for baroclinic organization of the convective system and further development of the eastward-moving vortex. The large atmospheric apparent heat source (Q1) also contributes for lifting the lower-level air into the upper atmosphere and for enhancing the low-level convective motion and convergence during the heavy rainfall process. Piecewise potential vorticity inversion further verifies the crucial role that the diabatic heating played in developing the anomalous geopotential height favorable for the enhanced rainfall. The combined action of the dynamic and thermodynamic processes, as well as the rich moisture supply from the seas, synergistically sustained and enhanced the eastward-moving rainfall.


2020 ◽  
Author(s):  
Minhui Li ◽  
Baosheng Wu ◽  
Yi Chen

<p><span><span lang="EN-US">Tibetan Plateau is the source of many major rivers in Asia. Drainage networks of these rivers vary in shapes and features due to complex climatic and geomorphic conditions. In this study, we extracted drainage networks in the source area of Yellow River, Yangtze River and Yarlung Zangbo River from 90-m-resolution SRTM DEM. We chose 62 sub-basins in the Yellow River, 96 sub-basins in the Yangtze River and 120 sub-basins in the Yarlung Zangbo River and tested self-similarity of drainage networks in two ways. First, we tested self-similarity for traditional Horton laws. Based on Horton-Strahler order, the results indicate that rivers with low levels generally obey Horton laws while rivers with high levels show deviation. Second, we tested statistical self-similarity in the topology of river networks. Random self-similar networks (RSN) model which combines self-similarity and randomness shows topological features of river networks statistically. Real networks were decomposed into generators that produce the network. The results demonstrate that the generators of RSN model obey a geometric distribution and the parameter p, which describes the distribution of generators, ranges from 0.401 to 0.587. Self-similarity holds in a statistical sense in the selected basins in the Tibetan Plateau. Motivated by the need to understand the controlling factors of drainage networks in Tibetan Plateau, these sub-basins were divided into groups according to possible controlling factors, such as climate, tectonic and geology. Analysis shows that Horton ratios and generators of low-level rivers are affected by precipitation, but the relationship between these parameters of high-level rivers and these factors is not obvious. In order to further explore the controlling factors, we analyzed three typical rivers (Tao River, Yalong River and Lasa River) in more details. For Yalong River, Tao River and Lasa River, bifurcation ratios are 4.46, 5.00 and 4.37 while the length ratios are 2.35, 2.71 and 2.30 respectively. The Normalized Concavity Index for Tao River, Lasa River and Yalong River are -0.129, -0.082 and 0.009</span> <span lang="EN-US">respectively, indicating that the profiles of the first two rivers are concave-up and that of Yalong River is convex-up. The influence of climate is well reflected in the structure and longitudinal profiles of the drainage network in the Tibetan Plateau. Strong tectonic activities in the eastern margin of the Tibetan Plateau destroy the network of Yalong River, resulting in river capture to maintain equilibrium.</span></span></p>


2020 ◽  
Author(s):  
Hou Xiaohuan ◽  
Liu Lina ◽  
Sun Zhe ◽  
Cao Xianyong ◽  
Hou Juzhi

<p>The headwater region of the Yangtze River serves as major constituent of Chinese Water Tower and is critical in providing fresh water for hundreds of millions of people living downstream. Hydrological variation is mainly influenced by environmental changes. Therefore, a good understanding of climate changes in the source region of the Yangtze River (SRYR) is of great significance. Here, we provide a lacustrine sediment core from Saiyong Co in SRYR, northeastern Tibetan Plateau, China, to reconstruct hydrological variation and the main influencing factors based on the analysis of grain size, scanning XRF, loss on ignition (LOI), which cover the past 6 ka. It is remarkable that total organic matter (LOI-550℃) exhibits opposite patterns regarding to the PC1 of XRF, which represents the allochthonous input, indicating the majority of organic matter was mainly yielded within the lake. Clustering of palaeohydrological proxies, such as the reduced PC1 and increase in median grain size, seems coincide with the weakened strength of the Indian summer monsoon, which suggest a generally dry trend in the SRYR during the mid-late Holocene. However, short pulses of outrageous period occurred at 3.8-3.2 ka BP and 1.5-1.0 ka BP. The abrupt increase in PC1 and very coarse silt indicate the lake catchment became more humid with higher surface runoff, which is consistent with weaker lake productivity. The inferred hydrological change in SRYR since 6 ka BP not only have significant environmental influence, but also agree with other sequences from Tibetan Plateau and the adjacent regions This study provides long-term records of paleoenvironmental evolution which is particularly significant to understand recent and to predict future hydrological change in SRYR.</p>


Geology ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 35-39
Author(s):  
Hongbo Zheng ◽  
Peter D. Clift ◽  
Mengying He ◽  
Zixuan Bian ◽  
Gaozheng Liu ◽  
...  

Abstract The First Bend on the Yangtze River (China), the point where the river ceases flowing toward the south and heads toward the northeast, has been one of the most strongly debated geomorphic features in Asia because it holds the key to understanding the history of the Yangtze River and is linked to the tectonically driven surface uplift of the southeastern Tibetan Plateau. Mid- to upper Eocene sedimentary rocks preserved in the Jianchuan Basin located immediately southwest of the First Bend demonstrate that a large river system, presumably the paleo–Jinshajiang River (the upper Yangtze), used to flow south through that region. Provenance analysis of sediments over the wider region, based mostly on U-Pb dating of detrital zircon grains, confirms that the once south-flowing paleo–Yangtze River originated in the Tibetan Plateau and flowed into the South China Sea. Inversion of the Jianchuan Basin, starting in or after the latest Eocene and associated with wider plateau surface uplift at that time, caused the river to be diverted toward the northeast where it was confined along tectonic lineaments associated with strike-slip faulting, giving birth to the First Bend, a major step in the formation of the modern Yangtze River.


Geomorphology ◽  
2018 ◽  
Vol 321 ◽  
pp. 167-173 ◽  
Author(s):  
Weiming Liu ◽  
Kaiheng Hu ◽  
Paul A. Carling ◽  
Zhongping Lai ◽  
Ting Cheng ◽  
...  

2019 ◽  
Vol 219 ◽  
pp. 24-35 ◽  
Author(s):  
Yang Zhao ◽  
Xiangde Xu ◽  
Liping Liu ◽  
Rong Zhang ◽  
Hongxiong Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document