A comparison study of summer-time synoptic-scale waves in South China and the Yangtze River basin using the TRMM Multi-Satellite Precipitation Analysis daily product

2008 ◽  
Vol 51 (1) ◽  
pp. 114-122 ◽  
Author(s):  
Rong Fu ◽  
Liang Hu ◽  
GuoJun Gu ◽  
YaoDong Li
Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1179 ◽  
Author(s):  
Shuai Xiao ◽  
Jun Xia ◽  
Lei Zou

Against the background of global climate change and anthropogenic stresses, extreme climate events (ECEs) are projected to increase in both frequency and intensity. Precipitation is one of the main climate parameters for ECE analysis. However, accurate precipitation information for extreme climate events research from dense rain gauges is still difficult to obtain in mountainous or economically disadvantaged regions. Satellite precipitation products (SPPs) with high spatial and temporal resolution offer opportunities to monitor ECE intensities and trends on large spatial scales. In this study, the accuracies of seven SPPs on multiple spatiotemporal scales in the Yangtze River Basin (YRB) during the period of 2003–2017 are evaluated, along with their ability to capture ECE characteristics. The seven products are the Tropical Rainfall Measuring Mission, Climate Hazards Group InfraRed Precipitation with Station Data (CHIRPS) (25), CHIRPS (05), Climate Prediction Center Morphing (CMORPH), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN)-Climate Data Record, PERSIANN-Cloud Classification System, and Global Precipitation Measurement (GPM) IMERG. Rain gauge precipitation data provided by the China Meteorological Administration are adopted as reference data. Various statistical evaluation metrics and different ECE indexes are used to evaluate and compare the performances of the selected products. The results show that CMORPH has the best agreement with the reference data on the daily and annual scales, but GPM IMERG performs relatively well on the monthly scale. With regard to ECE monitoring in the YRB, in general, GPM IMERG and CMORPH provide higher precision. As regards the spatial heterogeneity of the SPP performance in the YRB, most of the examined SPPs have poor accuracy in the mountainous areas of the upper reach. Only CMORPH and GPM IMERG exhibit superior performance; this is because they feature an improved inversion precipitation algorithm for mountainous areas. Furthermore, most SPPs have poor ability to capture extreme precipitation in the estuaries of the lower reach and to monitor drought in the mountainous areas of the upper reach. This study can provide a reference for SPP selection for ECE analysis.


2015 ◽  
Vol 16 (1) ◽  
pp. 407-426 ◽  
Author(s):  
Zhe Li ◽  
Dawen Yang ◽  
Bing Gao ◽  
Yang Jiao ◽  
Yang Hong ◽  
...  

Abstract The present study aims to evaluate three global satellite precipitation products [TMPA 3B42, version 7 (3B42 V7); TMPA 3B42 real time (3B42 RT); and Climate Prediction Center morphing technique (CMORPH)] during 2003–12 for multiscale hydrologic applications—including annual water budgeting, monthly and daily streamflow simulation, and extreme flood modeling—via a distributed hydrological model in the Yangtze River basin. The comparison shows that the 3B42 V7 data generally have a better performance in annual water budgeting and monthly streamflow simulation, but this superiority is not guaranteed for daily simulation, especially for flood monitoring. It is also found that, for annual water budgeting, the positive (negative) bias of the 3B42 RT (CMORPH) estimate is mainly propagated into the simulated runoff, and simulated evapotranspiration tends to be more sensitive to negative bias. Regarding streamflow simulation, both near-real-time products show a region-dependent bias: 3B42 RT tends to overestimate streamflow in the upper Yangtze River, and, in contrast, CMORPH shows serious underestimation in those downstream subbasins while it is able to effectively monitor streamflow into the Three Gorges Reservoir. Using 394 selected flood events, the results indicate that 3B42 RT and CMORPH have competitive performances for near-real-time flood monitoring in the upper Yangtze, but for those downstream subbasins, 3B42 RT seems to perform better than CMORPH. Furthermore, the inability of all satellite products to capture some key features of the July 2012 extreme floods reveals the deficiencies associated with them, which will limit their hydrologic utility in local flood monitoring.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Zengxin Zhang ◽  
Qiu Jin ◽  
Xi Chen ◽  
Chong-Yu Xu ◽  
Sheng Chen ◽  
...  

Satellite-based precipitation products are expected to offer an alternative to ground-based rainfall estimates in the present and the foreseeable future. In this paper, we evaluate the performance of TRMM 3B42 precipitation products in the Yangtze River basin for the period of 2003~2010. The results are as follows: (1) the performance of RTV7 (V7) products is generally better than that of RTV6 (V6) in the Yangtze River basin, and the percentage of best performance (bias ranging within −10%~10%) for the annual mean precipitation increases from 21.72% (54.79%) to 36.70% (59.85%) as the RTV6 (V6) improved to the RTV7 (V7); (2) the TMPA products have better performance in the wet period than that in the dry period in the Yangtze River basin; (3) the performance of TMPA precipitation has been affected by the elevation and a downward trend can be found with the increasing elevation in the Yangtze River basin. The average CC between the V7 and observed precipitation in July decreases from 0.71 to 0.40 with the elevation of gauge stations increasing from 500 m below to 4000 m above in the Yangtze River basin. More attention should be paid to the influence of complex climate and topography.


2021 ◽  
Author(s):  
Guanglin He

Southern China was a region with mixed rice-millet farming during the Middle Neolithic period and also suggested to be the homeland of Tai-Kadai-speaking (TK) people. The archaeological evidence of animal and plant domestication has demonstrated that southern Chinese rice agriculturalists dispersed from the Yangtze River basin with the dissemination of TK, Austroasiatic (AA), Austronesian (AN) and Hmong-Mien (HM) languages. However, the formations of the inland TK-speaking people, central/southern Han Chinese and their relationships with Neolithic farmers from the Yangtze and Yellow Rivers (YR) basins are far from clear due to the limited sampling of South China. Here, we revealed the spatiotemporal demographic history of southern China by analyzing newly generated genome-wide data of 70 southeastern mainland TK speakers including Dong, Gelao and Bouyei and 45 southwestern Han Chinese together with comprehensive modern/ancient reference datasets. Southwest Han Chinese and Gelao demonstrated a closer genomic affinity to Neolithic YR farmers, while inland TKs (Dong and Bouyei) demonstrated a closer genomic affinity to coastal TK/AN-speaking islanders and Neolithic Yangtze farmers and their descendants. The shared genetic drift between inland TK/AN speaker highlighted a common origin of AN/TK groups, which may be descended from Tanshishan people or their predecessors (Xitoucun). Additionally, we found that inland TK/Sinitic could be modelled as an admixture of ancestral northern East Asian (ANEA) and ancestral southern East Asian (ASEA) sources with different proportions, in which the ANEA was phylogenetically closer to Neolithic millet farmers deriving from the YR Basin and the ASEA was phylogenetically closer to Coastal Neolithic-to-modern southern East Asians. Finally, we discovered genetic differentiation among TK people from southern China and Southeast Asia and obvious substructures between northern and southern inland Chinese TK people. The observed patterns of the spatiotemporal distribution of the northern and southern East Asian lineages in Central/southern China were also compatible with the scenario of bi-directional gene flow events from ANEA and ASEA. Conclusively, multiple lines of genomic evidence indicated millet farmers deriving from the YR basin and rice farmers deriving from the Yangtze River basin substantially contributed to the present-day mainland TK speakers and Central/southern Han Chinese, and formed the modern dual genetic admixture profile.


2020 ◽  
Vol 95 ◽  
pp. 84-96
Author(s):  
Gang Xu ◽  
Jian Liu ◽  
Marcello Gugliotta ◽  
Yoshiki Saito ◽  
Lilei Chen ◽  
...  

AbstractThis paper presents geochemical and grain-size records since the early Holocene in core ECS0702 with a fine chronology frame obtained from the Yangtze River subaqueous delta front. Since ~9500 cal yr BP, the proxy records of chemical weathering from the Yangtze River basin generally exhibit a Holocene optimum in the early Holocene, a weak East Asian summer monsoon (EASM) period during the middle Holocene, and a relatively strong EASM period in the late Holocene. The ~8.2 and ~4.4 cal ka BP cooling events are recorded in core ECS0702. The flooding events reconstructed by the grain-size parameters since the early Holocene suggest that the floods mainly occurred during strong EASM periods and the Yangtze River mouth sandbar caused by the floods mainly formed in the early and late Holocene. The Yangtze River-mouth sandbars since the early Holocene shifted from north to south, affected by tidal currents and the Coriolis force, and more importantly, controlled by the EASM. Our results are of great significance for enriching both the record of Holocene climate change in the Yangtze River basin and knowledge about the formation and evolution progress of the deltas located in monsoon regions.


Sign in / Sign up

Export Citation Format

Share Document