Late Triassic bivalves associated with a hydrothermal vent system in the Yidun Island Arc (SW China) of the eastern Tethys

2011 ◽  
Vol 54 (12) ◽  
pp. 1864-1870 ◽  
Author(s):  
Li Lin ◽  
LiDong Zhu ◽  
YanChun Pang ◽  
JinGeng Sha ◽  
Franz T. Fürsich ◽  
...  
2008 ◽  
Vol 179 (4) ◽  
pp. 411-425 ◽  
Author(s):  
Philippe Monjoie ◽  
Henriette Lapierre ◽  
Artan Tashko ◽  
Georges H. Mascle ◽  
Aline Dechamp ◽  
...  

AbstractTriassic volcanic rocks, stratigraphically associated with pelagic or reef limestones, are tectonically juxtaposed with Mesozoic ophiolites in the Tethyan realm. From the central (Dinarides, Hellenides) and eastern Mediterranean (Antalya, Troodos, Baër Bassit) to the Semail nappes (Oman), they occur either associated to the tectonic sole of the ophiolitic nappes or as a distinct tectonic pile intercalated between the ophiolites and other underthrust units. In the Dinaro-Hellenic belt, the Pelagonian units represent the lower plate, which is underthrust beneath the ophiolites. Middle to Late Triassic volcanic sequences are interpreted as the eastern flank of the Pelagonian platform and are therefore considered as a distal, deep-water part of the Pelagonian margin.The Triassic volcanics from Albania and Othrys are made up of basaltic pillowed and massive flows, associated locally with dolerites and trachytes. New elemental, Nd and Pb isotopic data allow to recognize four types of volcanic suites: (1) intra-oceanic alkaline and tholeiitic basalts, (2) intra-oceanic arc-tholeiites, (3) back-arc basin basalts, (4) calc-alkaline mafic to felsic rocks. Nd and Pb isotopic initial ratios suggest that the within-plate volcanic rocks were derived from an enriched oceanic island basalt type mantle source, devoid of any continental crustal component. The lower εNd value of the trachyte could be due to assimilation of oceanic altered crust or sediments in a shallow magma chamber. Island arc tholeiites and back-arc basin basalts have a similar wide range of εNd. The absence of Nb negative anomalies in the back-arc basin basalts suggests that the basin floored by these basalts was wide and mature. The high Th contents of the island arc tholeiites suggest that the arc volcanoes were located not far away from the continental margin.Albania and Othrys volcanics contrast with the Late Triassic volcanism from eastern Mediterranean (SW Cyprus, SW Turkey), which displays solely features of oceanic within plate suites. The presence of back-arc basin basalts associated with arc-related volcanics in Central Mediterranean indicates that they were close to a still active subduction during the Upper Triassic, while back-arc basins developed, associated with within-plate volcanism, leading to the NeoTethys opening.


1987 ◽  
Vol 61 (S22) ◽  
pp. 1-83 ◽  
Author(s):  
Cathryn R. Newton ◽  
Michael T. Whalen ◽  
Joel B. Thompson ◽  
Nienke Prins ◽  
David Delalla

Early Norian silicified bivalves from Hells Canyon in the Wallowa terrane of northeastern Oregon are part of a rich molluscan biota associated with a tropical island arc. The Hells Canyon locality preserves lenses of silicified shells formed as tempestites in a shallow subtidal carbonate environment. These shell assemblages are parautochthonous and reflect local, rather than long-distance, transport. Silicification at this locality involved small-scale replacement of original calcareous microstructures, or small-scale replacement of neomorphosed shells, without an intervening phase of moldic porosity. This incremental replacement of carbonate by silica contrasts markedly with void-filling silicification textures reported previously from silicified Permian bivalve assemblages.The bivalve paleoecology of this site indicates a suspension feeding biota existing on and within the interstices of coral-spongiomorph thickets, and inhabiting laterally adjacent substrates of peloidal carbonate sand. The bivalve fauna is ecologically congruent with the reef-dwelling molluscs associated with Middle Triassic sponge-coral buildups in the Cassian Formation of the Dolomites (Fuersich and Wendt, 1977). Hells Canyon is a particularly important early Norian locality because of the diversity of substrate types and because the site includes many first occurrences of bivalves in the North American Cordillera. These first occurrences include the first documentation of the important epifaunal families Pectinidae and Terquemiidae in Triassic rocks of the North American Cordillera.The large number of biogeographic and geochronologic range extensions discovered in this single tropical Norian biota indicates that use of literature-based range data for Late Triassic bivalves may be very hazardous. Many bivalve taxa formerly thought to have gone extinct in Karnian time have now been documented from Norian strata in this arc terrane. These range extensions, coupled with the high bivalve species richness of the Hells Canyon site, suggest that the Karnian mass extinction in several literature-based compilations may be an artifact of incomplete sampling. Even for the Norian, present compilations of molluscan extinction may have an unacceptably large artifactual component.Thirty-five bivalve taxa from the Hells Canyon locality are discussed. Of these, seven are new: the mytilid Mysidiella cordillerana n. sp., the limacean Antiquilima vallieri n. sp., the true oyster Liostrea newelli n. sp., the pectinacean Crenamussium concentricum n. gen. and sp., the unioid Cardinioides josephus n. sp., the trigoniacean Erugonia canyonensis n. gen. and sp., and the carditacean Palaeocardita silberlingi n. sp.


2012 ◽  
Vol 48 ◽  
pp. 43-55 ◽  
Author(s):  
Bin Deng ◽  
Shugen Liu ◽  
Luba Jansa ◽  
Junxing Cao ◽  
Yang Cheng ◽  
...  

2012 ◽  
Vol 524-527 ◽  
pp. 16-23
Author(s):  
Jian Guo Huang ◽  
Run Sheng Han ◽  
Ren Tao ◽  
Zhi Qiang Li

The Late Triassic Tumugou Formation volcanic rocks which belongs to typical island arc volcanic rocks in southern end of Yidun island arc belt is located at the eastern of the Zhongdian ,NW Yunnan, SW China. The volcanic rocks can be divided into three categories:andesitic basalt, andesite, quartz andesite, etc. Through geochemical analysis the major elements, rare earth ele and trace element in volcanic rocks, SiO255.18-57.59×10-2,TiO21.16-1.45×10-2,Na2O+K2O5.11-8.05×10-2.consider it is calc-alkaline- alkaline Series of high-K andesite, volcanic may be controlled by the crystal fractionation of magma.Rb31.50-101×10-6,Ba1310-12300×10-6,Nb/Ta11.4-15.5,REE166.07-240.78×10-6,δEu0.74-1.00,REE distribution patterns show oblique to the HREE side and enrichment in LREE .Eu anomaly is not obvious. It is can see from the relevant figure about trace element, it is very similar in magmatic distribution patterns between volcanic rock and Volcanic-arc rock, indicating that the volcanic in this area may be formed in volcanic-arc environment. From east to west, Magma source depth have regular change with the really thickness of mainland shell. Explain that Tumugou Formation volcanic rock is subduction by Ganzi- Litang Ocean basin from east to west. Hongshan-Ousaila region of eastern edge of Zhongdian is the volcanic island arc system during the passive continental margin into an active continental margin.


2014 ◽  
Vol 57 (9) ◽  
pp. 2181-2194 ◽  
Author(s):  
HuiChuan Liu ◽  
YueJun Wang ◽  
WeiMing Fan ◽  
JianWei Zi ◽  
YongFeng Cai ◽  
...  

1996 ◽  
Vol 33 (8) ◽  
pp. 1105-1126 ◽  
Author(s):  
G. E. Ray ◽  
I. C. L. Webster ◽  
G. L. Dawson

The Nicola Group at Hedley, British Columbia, is a late Carnian to late Norian (Late Triassic) sequence of calcareous sedimentary and arc-related volcaniclastic rocks. It was deposited on a tectonically active paleoslope that marked either the rifted eastern margin of the shallow-marine Nicola basin or the faulted edge of an intrabasinal platform. The lower part of the Nicola Group comprises a succession of four essentially coeval sedimentary facies. From east to west across the district, these are informally named the thin (approx. 200 m), shallow-marine, limestone-dominant French Mine formation; the thicker, calcareous siltstone-dominant Hedley and Chuchuwayha formations in the central part of the district; and the thick (up to 2200 m), deeper water and argillite-dominant Stemwinder formation. These facies are all blanketed by the Whistle formation, a 1200 m thick unit of basaltic tuff and tuffaceous sediment whose base is marked by a gravity-slide megabreccia, the Copperfield breccia. The Nicola arc at Hedley was associated with two plutonic episodes. Oldest are the Hedley intrusions, which are related to economic Au skarns, including the Nickel Plate deposit, which has produced over 71 t of gold from 13.4 Mt of ore. The Hedley intrusions are similar in composition (quartz gabbro to quartz diorite) and overall metaluminous chemistry to other island-arc-generated plutons related to many Cu and Fe skarns in British Columbia, although they are less evolved. They also differ in having lower Fe2O3/FeO ratios (avg. 0.23), indicating a reduced oxidation state, and higher Ba/La and Sc/Nb ratios. A slightly younger plutonic episode produced the 193 Ma (Early Jurassic) Bromley batholith and the 194 Ma Mount Riordan stock; the latter is associated with the Mount Riordan (Crystal Peak) industrial garnet skarn. Gold skarns are preferentially developed in areas where the Hedley intrusions cut the Hedley and French Mine formations. The Au skarn ore is marked by anomalous As, Bi, Te, and Co values, and by high pyrrhotite/pyrite and pyroxene/garnet ratios. It is distinct from the ore of Fe, Cu, Mo, Pb–Zn, W, and Sn skarns by its very low Cu/Au, Zn/Au, and Ag/Au ratios (avg. 97, 18, and 12, respectively).


Lithos ◽  
2014 ◽  
Vol 190-191 ◽  
pp. 363-382 ◽  
Author(s):  
Cheng-Biao Leng ◽  
Qiu-Yue Huang ◽  
Xing-Chun Zhang ◽  
Shou-Xu Wang ◽  
Hong Zhong ◽  
...  

2018 ◽  
Vol 156 (4) ◽  
pp. 683-701 ◽  
Author(s):  
XINGHAI LANG ◽  
DONG LIU ◽  
YULIN DENG ◽  
JUXING TANG ◽  
XUHUI WANG ◽  
...  

AbstractJurassic sandstones in the Xiongcun porphyry copper–gold district, southern Lhasa subterrane, Tibet, China were analysed for petrography, major oxides and trace elements, as well as detrital zircon U–Pb and Hf isotopes, to infer their depositional age, provenance, intensity of source-rock palaeo-weathering and depositional tectonic setting. This new information provides important evidence to constrain the tectonic evolution of the southern Lhasa subterrane during the Late Triassic – Jurassic period. The sandstones are exposed in the lower and upper sections of the Xiongcun Formation. Their average modal abundance (Q21F11L68) classifies them as lithic arenite, which is also supported by geochemical studies. The high chemical index of alteration values (77.19–85.36, mean 79.96) and chemical index of weathering values (86.19–95.59, mean 89.98) of the sandstones imply moderate to intensive weathering of the source rock. Discrimination diagrams based on modal abundance, geochemistry and certain elemental ratios indicate that felsic and intermediate igneous rocks constitute the source rocks, probably with a magmatic arc provenance. The detrital zircon ages (161–243 Ma) and εHf(t) values (+10.5 to +16.2) further constrain the sandstone provenance as subduction-related Triassic–Jurassic felsic and intermediate igneous rocks from the southern Lhasa subterrane. A tectonic discrimination method based on geochemical data of the sandstones, as well as detrital zircon ages from sandstones, reveals that the sandstones were most likely deposited in an oceanic island-arc setting. These results support the hypothesis that the tectonic background of the southern Lhasa subterrane was an oceanic island-arc setting, rather than a continental island-arc setting, during the Late Triassic – Jurassic period.


2020 ◽  
pp. 289-311
Author(s):  
Warwick S. Board ◽  
Duncan F. McLeish ◽  
Charles J. Greig ◽  
Octavia E. Bath ◽  
Joel E. Ashburner ◽  
...  

Abstract The Brucejack intermediate-sulfidation epithermal Au-Ag deposit, located 65 km north of Stewart, BC, forms part of a well-mineralized, structurally controlled, north-south gossanous trend associated with Early Jurassic intrusions straddling the Late Triassic-Early Jurassic Stuhini-Hazelton Group unconformity in the Sulphurets mineral district. Mining of the deposit commenced in mid-2017 after a long history of exploration dating back to the 1880s. Mineralization is hosted in deformed Lower Jurassic island-arc volcanic rocks of the Hazelton Group exposed on the eastern limb of the Cretaceous McTagg anticlinorium. High-grade Au-Ag mineralization was formed from ~184 to 183 Ma in association with a telescoped, multipulsed magmatic-hydrothermal system beneath an active local volcanic center. Precious metal mineralization occurs as coarse aggregates of electrum and silver sulfosalts in steeply dipping, E- to SE-trending quartz-carbonate vein stockwork zones cutting low-grade intrusion-related phyllic alteration. Epithermal vein development is interpreted to have occurred during the waning stages of Early Jurassic sinistral transpression in a compressive arc environment, followed by a limited Cretaceous deformation overprint.


Sign in / Sign up

Export Citation Format

Share Document