Extreme precipitation events in East China and associated moisture transport pathways

2016 ◽  
Vol 59 (9) ◽  
pp. 1854-1872 ◽  
Author(s):  
Yang Zhao ◽  
XiangDe Xu ◽  
TianLiang Zhao ◽  
HongXiong Xu ◽  
Fei Mao ◽  
...  
Author(s):  
Yong Tang ◽  
Anning Huang ◽  
Peili Wu ◽  
Danqing Huang ◽  
Daokai Xue ◽  
...  

2020 ◽  
Author(s):  
Marta Vázquez ◽  
Fátima Ferreira ◽  
Raquel Nieto ◽  
Margarida Liberato ◽  
Luis Gimeno

2021 ◽  
Author(s):  
Andries Jan De Vries

<p>Extreme precipitation events (EPEs) frequently cause flooding with dramatic socioeconomic impacts in many parts of the world. Previous studies considered two synoptic-scale processes, Rossby wave breaking and intense moisture transport, typically in isolation, and their linkage to such EPEs in several regions. This study presents for the first time a global and systematic climatological analysis of these two synoptic-scale processes, in tandem and in isolation, for the occurrence of EPEs. To this end, we use 40-year ERA-Interim reanalysis data (1979-2018) and apply object-based identification methods for (i) daily EPEs, (ii) stratospheric potential vorticity (PV) streamers as indicators of Rossby wave breaking, and (iii) structures of high vertically integrated horizontal water vapor transport (IVT). First, the importance of these two synoptic-scale processes is demonstrated by case studies of previously documented flood events that inflicted catastrophic impacts in different parts of the world. Next, a climatological quantification shows that Rossby wave breaking is associated with > 90 % of EPEs near high topography and over the Mediterranean, whereas intense moisture transport is linked to > 95 % of EPEs over many coastal zones, consistent with findings of atmospheric river-related studies. Combined Rossby wave breaking and intense moisture transport contributes up to 70 % of EPEs in several subtropical and extratropical regions, including (semi)arid desert regions where tropical-extratropical interactions are of key importance for (heavy) rainfall. A detailed analysis shows that five categories with different combinations of wave breaking and intense moisture transport can reflect a large range of EPE-related weather systems across various climate zones. Odds ratios of EPEs linked to the two synoptic-scale processes suggest that intense moisture transport is stronger associated with the occurrence of EPEs than wave breaking. Furthermore, the relationship between the PV and IVT characteristics and the precipitation volumes shows that the depth of the wave breaking and moisture transport intensity are intimately connected with the extreme precipitation severity. Finally, composites reveal that subtropical and extratropical EPEs, linked to Rossby wave breaking, go along with the formation of upper-level troughs and cyclogenetic processes near the surface downstream, reduced static stability beneath the upper-level forcing (only over water), and dynamical lifting ahead (over water and land). This study concludes with a concept that reconciles well-established meteorological principles with the importance of Rossby wave breaking and intense moisture transport for extreme precipitation events. The findings of this study may contribute to an improved understanding of the atmospheric processes that lead to EPEs, and may find application in climatic studies on extreme precipitation changes in a warming climate.</p>


2020 ◽  
Author(s):  
Andries Jan De Vries

Abstract. Extreme precipitation events (EPEs) cause frequently flooding with dramatic socioeconomic impacts in many parts of the world. Previous studies considered two synoptic-scale processes, Rossby wave breaking and intense moisture transport, typically in isolation, and their linkage to such EPEs in several regions. This study presents for the first time a global and systematic climatological analysis of these two synoptic-scale processes, in tandem and in isolation, for the occurrence of EPEs. To this end, we use 40-year ERA-Interim reanalysis data (1979–2018) and apply object-based identification methods for (i) daily EPEs, (ii) stratospheric potential vorticity (PV) streamers as indicators of Rossby wave breaking, and (iii) structures of high vertically integrated horizontal water vapor transport (IVT). First, the importance of these two processes is demonstrated by case studies of previously documented flood events that inflicted catastrophic impacts in different parts of the world. Next, a climatological quantification shows that Rossby wave breaking is associated with > 90 % of EPEs near high topography and over the Mediterranean, intense moisture transport is linked to > 90 % of EPEs over many coastal zones, and their combined occurrence contributes to > 70 % of EPEs in several subtropical and extratropical regions. A more detailed analysis shows that a majority of EPEs associated with (1) only Rossby wave breaking are confined to higher-latitude regions that are deprived from remote moisture supplies by high topography and deserts, (2) only intense moisture transport are found circumglobally at the outer tropics, associated with tropical cyclones, tropical easterly waves, and monsoon lows, (3) combined Rossby wave breaking and intense moisture transport dominate a large part of the globe, in particular over dry subtropical regions where tropical-extratropical interactions are of key relevance, (4) remote, far upstream Rossby wave breaking and intense moisture transport occur over mountainous extratropical west coasts, reminiscent of landfalling atmospheric rivers, and (5) neither of the two synoptic-scale processes are concentrated over the inner tropics and high topography at lower latitudes, where EPEs arise under the influence of local forcing. Accordingly, different combinations of wave breaking and intense moisture transport can reflect a large range of weather systems with relevance to EPEs across various climate zones. Furthermore, the relationship between the PV and IVT characteristics and the precipitation volumes shows that the strength of the wave breaking and moisture transport intensity are intimately connected with the extreme precipitation severity. Finally, composites reveal that subtropical and extratropical EPEs, linked to Rossby wave breaking, go along with the formation of upper-level troughs and cyclogenetic processes near the surface downstream, reduced static stability beneath the upper-level forcing (only over water), and dynamical lifting ahead (over water and land). This study concludes with a concept that reconciles well-established meteorological principles with the importance of Rossby wave breaking and intense moisture transport for extreme precipitation events. The findings of this study may contribute to an improved understanding of the atmospheric processes that lead to EPEs, and may find application in climatic studies on extreme precipitation changes in a warming climate.


2021 ◽  
pp. 1-44
Author(s):  
Ryosuke Shibuya ◽  
Yukari Takayabu ◽  
Hirotaka Kamahori

AbstractThis study examines disastrous historical precipitation cases that generate extreme precipitation simultaneously over a wide area in Japan (as in July 2018), defined as widespread extreme precipitation events. A statistically significant large-scale environment conducive for widespread extreme precipitation events over western Japan is investigated based on composite analysis. During a widespread precipitation event, a zonally elongated positive anomaly of the column-integrated water vapor extends from East China to western Japan. In the lower troposphere, a dipole of a geopotential height anomaly exists with positive and negative values at the east and west of the precipitation area, respectively. It is found that the negative geopotential anomaly is enhanced over East China at two days before the event and moves toward the precipitating area mainly due to the PV production term by diabatic heating, in analogy of a diabatic Rossby wave. The temporal evolution of the dynamical forced vertical velocity is well in phase with that the PV production term, inferring the importance of the coupling between the dynamical forced motion and diabatic heating. This result provides a physical understanding of the reason why both the background moisture and the baroclinicity are essential in the composited atmospheric fields and another view to the importance of the feedback parameter between the dynamical motion and diabatic heating.


2019 ◽  
Vol 147 (7) ◽  
pp. 2693-2714 ◽  
Author(s):  
Liu Zhang ◽  
Jinzhong Min ◽  
Xiaoran Zhuang ◽  
Russ S. Schumacher

Abstract This study investigated the characteristics of extreme precipitation events associated with mesoscale convective systems (MCSs) in East China (the area east of 96°E) during 2016–17. Over the entire region, 204 events were first identified and classified into synoptic, tropical, MCS, small-scale-storm (SSS), and unclassified types. For 73 MCS-type events, further division and analysis were conducted according to the organizational modes. Results show that MCS-related events occurred most frequently near southern Fujian Province and from April to October with a peak in July. The area of occurrence shifted from the south in spring to the north in summer before going back to the south in autumn. The events occurred most commonly from afternoon to early evening, matured around late afternoon, and ended before dark. Among MCS subcategories, the longest average duration was seen in the multiple-MCS cases. Of the 15 selected multiple-MCS events, 11 were defined as early-maturing type with peak rainfall occurrence before the midpoint of duration while the others were late maturing. Although multiple-MCS events were accompanied by a southwest low-level jet, strong warm-air advection, and convective instability, early-maturing cases had stronger synoptic-scale ascent, moister environments, and smaller surface-based convective available potential energy (SBCAPE) and convection inhibition (SBCIN) at the most extreme rainfall-occurrence point. Compared to the MCS type within all extreme precipitation events over the United States, the percentage was lower in China. However, the events in China exhibit more pronounced seasonal cycle.


Sign in / Sign up

Export Citation Format

Share Document