Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events

2016 ◽  
Vol 41 (1) ◽  
pp. 117-141 ◽  
Author(s):  
Luis Gimeno ◽  
Francina Dominguez ◽  
Raquel Nieto ◽  
Ricardo Trigo ◽  
Anita Drumond ◽  
...  
2020 ◽  
Author(s):  
Marta Vázquez ◽  
Fátima Ferreira ◽  
Raquel Nieto ◽  
Margarida Liberato ◽  
Luis Gimeno

2019 ◽  
Vol 32 (21) ◽  
pp. 7105-7126 ◽  
Author(s):  
Xuezhi Tan ◽  
Thian Yew Gan ◽  
Shu Chen ◽  
Daniel E. Horton ◽  
Xiaohong Chen ◽  
...  

Abstract Both large-scale atmospheric circulation and moisture content in the atmosphere govern regional precipitation. We partition recent changes in mean, heavy, and extreme precipitation for all seasons over Canada to changes in synoptic circulation patterns (dynamic changes) and in atmospheric moisture conditions (thermodynamic changes) using 500-hPa geopotential height and precipitation data over 1979–2014. Using the self-organizing map (SOM) cluster analysis, we identify statistically significant trends in occurrences of certain synoptic circulation patterns over the Canadian landmass, which have dynamically contributed to observed changes in precipitation totals and occurrence of heavy and extreme precipitation events over Canada. Occurrences of circulation patterns such as westerlies and ridges over western North America and the North Pacific have considerably affected regional precipitation over Canada. Precipitation intensity and occurrences of precipitation extremes associated with each SOM circulation pattern also showed statistically significant trends resulting from thermodynamic changes in the atmospheric moisture supply for precipitation events. A partition analysis based on the thermodynamic–dynamic partition method indicates that most (~90%) changes in mean and extreme precipitation over Canada resulted from changes in precipitation regimes occurring under each synoptic circulation pattern (thermodynamic changes). Other regional precipitation changes resulted from changes in occurrences of synoptic circulation patterns (dynamic changes). Because of the high spatial variability of precipitation response to changes in thermodynamic and dynamic conditions, dynamic contributions could offset thermodynamic contributions to precipitation changes over some regions if thermodynamic and dynamic contributions are in opposition to each other (negative or positive), which would result in minimal changes in precipitation intensity and occurrences of heavy and extreme precipitation events.


2021 ◽  
Author(s):  
Andries Jan De Vries

<p>Extreme precipitation events (EPEs) frequently cause flooding with dramatic socioeconomic impacts in many parts of the world. Previous studies considered two synoptic-scale processes, Rossby wave breaking and intense moisture transport, typically in isolation, and their linkage to such EPEs in several regions. This study presents for the first time a global and systematic climatological analysis of these two synoptic-scale processes, in tandem and in isolation, for the occurrence of EPEs. To this end, we use 40-year ERA-Interim reanalysis data (1979-2018) and apply object-based identification methods for (i) daily EPEs, (ii) stratospheric potential vorticity (PV) streamers as indicators of Rossby wave breaking, and (iii) structures of high vertically integrated horizontal water vapor transport (IVT). First, the importance of these two synoptic-scale processes is demonstrated by case studies of previously documented flood events that inflicted catastrophic impacts in different parts of the world. Next, a climatological quantification shows that Rossby wave breaking is associated with > 90 % of EPEs near high topography and over the Mediterranean, whereas intense moisture transport is linked to > 95 % of EPEs over many coastal zones, consistent with findings of atmospheric river-related studies. Combined Rossby wave breaking and intense moisture transport contributes up to 70 % of EPEs in several subtropical and extratropical regions, including (semi)arid desert regions where tropical-extratropical interactions are of key importance for (heavy) rainfall. A detailed analysis shows that five categories with different combinations of wave breaking and intense moisture transport can reflect a large range of EPE-related weather systems across various climate zones. Odds ratios of EPEs linked to the two synoptic-scale processes suggest that intense moisture transport is stronger associated with the occurrence of EPEs than wave breaking. Furthermore, the relationship between the PV and IVT characteristics and the precipitation volumes shows that the depth of the wave breaking and moisture transport intensity are intimately connected with the extreme precipitation severity. Finally, composites reveal that subtropical and extratropical EPEs, linked to Rossby wave breaking, go along with the formation of upper-level troughs and cyclogenetic processes near the surface downstream, reduced static stability beneath the upper-level forcing (only over water), and dynamical lifting ahead (over water and land). This study concludes with a concept that reconciles well-established meteorological principles with the importance of Rossby wave breaking and intense moisture transport for extreme precipitation events. The findings of this study may contribute to an improved understanding of the atmospheric processes that lead to EPEs, and may find application in climatic studies on extreme precipitation changes in a warming climate.</p>


2016 ◽  
Vol 59 (9) ◽  
pp. 1854-1872 ◽  
Author(s):  
Yang Zhao ◽  
XiangDe Xu ◽  
TianLiang Zhao ◽  
HongXiong Xu ◽  
Fei Mao ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-20 ◽  
Author(s):  
Ibrahima Diba ◽  
Moctar Camara ◽  
Alioune Badara Sarr

This study aims to evaluate the impacts of the Sahel-Sahara interface reforestation on spatiotemporal variability of the summer rainfall and extreme precipitation events over West Africa using the RegCM4 model. The land surface scheme of RegCM4 was modified to incorporate an East-West reforested zone (15°N and 20°N). Two runs were performed using the standard version of RegCM4 and the modified one of the same model taking into account the incorporated forest. The reforestation significantly modifies rainfall signal over West Africa by increasing it over the reforested zone and the Fouta Jallon highlands (FJH). This rainfall increase is associated with a strengthening of the atmospheric moisture over the reforested area. This atmospheric moisture content increase associated with the wind dynamic may explain the spatiotemporal change of the rainfall and extreme precipitation events. The analysis of the impacts of the reforestation on some rainfall indices shows an increase of the 90th, 95th, and 99th percentiles over the reforested zone and off the FJH. This reforestation also causes an increase of the maximum length of the consecutive wet days over and off FJH and a decrease of the maximum length of the consecutive dry days over the northern Sahel and the reforested zone.


2020 ◽  
Author(s):  
Andries Jan De Vries

Abstract. Extreme precipitation events (EPEs) cause frequently flooding with dramatic socioeconomic impacts in many parts of the world. Previous studies considered two synoptic-scale processes, Rossby wave breaking and intense moisture transport, typically in isolation, and their linkage to such EPEs in several regions. This study presents for the first time a global and systematic climatological analysis of these two synoptic-scale processes, in tandem and in isolation, for the occurrence of EPEs. To this end, we use 40-year ERA-Interim reanalysis data (1979–2018) and apply object-based identification methods for (i) daily EPEs, (ii) stratospheric potential vorticity (PV) streamers as indicators of Rossby wave breaking, and (iii) structures of high vertically integrated horizontal water vapor transport (IVT). First, the importance of these two processes is demonstrated by case studies of previously documented flood events that inflicted catastrophic impacts in different parts of the world. Next, a climatological quantification shows that Rossby wave breaking is associated with > 90 % of EPEs near high topography and over the Mediterranean, intense moisture transport is linked to > 90 % of EPEs over many coastal zones, and their combined occurrence contributes to > 70 % of EPEs in several subtropical and extratropical regions. A more detailed analysis shows that a majority of EPEs associated with (1) only Rossby wave breaking are confined to higher-latitude regions that are deprived from remote moisture supplies by high topography and deserts, (2) only intense moisture transport are found circumglobally at the outer tropics, associated with tropical cyclones, tropical easterly waves, and monsoon lows, (3) combined Rossby wave breaking and intense moisture transport dominate a large part of the globe, in particular over dry subtropical regions where tropical-extratropical interactions are of key relevance, (4) remote, far upstream Rossby wave breaking and intense moisture transport occur over mountainous extratropical west coasts, reminiscent of landfalling atmospheric rivers, and (5) neither of the two synoptic-scale processes are concentrated over the inner tropics and high topography at lower latitudes, where EPEs arise under the influence of local forcing. Accordingly, different combinations of wave breaking and intense moisture transport can reflect a large range of weather systems with relevance to EPEs across various climate zones. Furthermore, the relationship between the PV and IVT characteristics and the precipitation volumes shows that the strength of the wave breaking and moisture transport intensity are intimately connected with the extreme precipitation severity. Finally, composites reveal that subtropical and extratropical EPEs, linked to Rossby wave breaking, go along with the formation of upper-level troughs and cyclogenetic processes near the surface downstream, reduced static stability beneath the upper-level forcing (only over water), and dynamical lifting ahead (over water and land). This study concludes with a concept that reconciles well-established meteorological principles with the importance of Rossby wave breaking and intense moisture transport for extreme precipitation events. The findings of this study may contribute to an improved understanding of the atmospheric processes that lead to EPEs, and may find application in climatic studies on extreme precipitation changes in a warming climate.


Author(s):  
Chengzhi Ye ◽  
Huqiang Zhang ◽  
Aurel Moise ◽  
Ruping Mo

The name ‘atmospheric river’ (AR) could easily be misinterpreted to mean rivers flowing in the sky. But, ARs actually refer to narrow bands of strong horizontal water vapour transport that are concentrated in the lower troposphere. These bands are called ‘atmospheric rivers’ because the water vapour flux they carry is close to the volume of water carried by big river systems on the ground. ARs can cause heavy rainfall events if some physical mechanisms, such as orographic enhancement, exist to set up the moisture convergence and vertical motions necessary to produce condensation. In recent decades, these significant moisture plumes have attracted increasing attention from scientific communities, especially in North America and western Europe, to further understand the connections between ARs and extreme precipitation events which can trigger severe natural disasters such as floods, mudslides and avalanches. Yet very limited research has been conducted in the Australia-Asian (A-A) region, where the important role of atmospheric moisture transport has long been recognised for its rainfall generation and variations. In this paper, we introduce a collaborative project between the Australian Bureau of Meteorology and China Meteorological Administration, which was set up to explore the detailed AR characteristics of atmospheric moisture transport embedded in the A-A monsoon system. The project in China focused on using AR analysis to explore connections between moisture transport and extreme rainfall mainly during the boreal summer monsoon season. In Australia, AR analysis was used to understand the connections between the river-like Northwest Cloud Band and rainfall in the region. Results from this project demonstrate the potential benefits of applying AR analysis to better understand the role of tropical moisture transport in rainfall generation in the extratropics, thus achieve better rainfall forecast skills at NWP (Numerical Weather Prediction), sub-seasonal and seasonal time scales. We also discuss future directions of this collaborative research, including further assessing potential changes in ARs under global warming.


2021 ◽  
Author(s):  
Sara Cloux ◽  
Damián Insua-Costa ◽  
Gonzalo Miguez-Macho ◽  
Vicente Perez-Muñuzuri

<div> <p>Extreme precipitation events are atmospheric phenomena causing floods that generate great economic and social losses. The Mediterranean region is characterized by a strong variability in time and space that favors the appearance of this type of phenomena. Therefore, determining the origin of humidity must be done.     </p> </div><div> <p>The UTrack-atmospheric-moisture model [1] is a Lagrangian tool to track atmospheric moisture flows forward in time using ERA-5 reanalysis weather data. The labeled moisture is released into the atmosphere in the form of evaporation. After determine the allocated moisture precipitated at each time, this model allows us to know the percentage of relative humidity that has precipitated for each of the labeled sources.  Here we present a comparison of these results with previous results obtained by other Lagrangian methods. </p> </div><div> <p>[1] Tuinenburg, Obbe A., and Arie Staal. Tracking the global flows of atmospheric moisture and associated uncertainties." Hydrology and Earth System Sciences 24.5 (2020): 2419-2435. </p> </div>


Sign in / Sign up

Export Citation Format

Share Document