Elastic-plastic seismic response of CRTS II slab ballastless track system on high-speed railway bridges

2017 ◽  
Vol 60 (6) ◽  
pp. 865-871 ◽  
Author(s):  
Bin Yan ◽  
Shi Liu ◽  
Hao Pu ◽  
GongLian Dai ◽  
XiaoPei Cai
Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2876
Author(s):  
Yingying Zhang ◽  
Lingyu Zhou ◽  
Akim D. Mahunon ◽  
Guangchao Zhang ◽  
Xiusheng Peng ◽  
...  

The mechanical performance of China Railway Track System type II (CRTS II) ballastless track suitable for High-Speed Railway (HSR) bridges is investigated in this project by testing a one-quarter-scaled three-span specimen under thermal loading. Stress analysis was performed both experimentally and numerically, via finite-element modeling in the latter case. The results showed that strains in the track slab, in the cement-emulsified asphalt (CA) mortar and in the track bed, increased nonlinearly with the temperature increase. In the longitudinal direction, the zero-displacement section between the track slab and the track bed was close to the 1/8L section of the beam, while the zero-displacement section between the track slab and the box girder bridge was close to the 3/8L section. The maximum values of the relative vertical displacement between the track bed and the bridge structure occurred in the section at three-quarters of the span. Numerical analysis showed that the lower the temperature, the larger the tensile stresses occurring in the different layers of the track structure, whereas the higher the temperature, the higher the relative displacement between the track system and the box girder bridge. Consequently, quantifying the stresses in the various components of the track structure resulting from sudden temperature drops and evaluating the relative displacements between the rails and the track bed resulting from high-temperature are helpful in the design of ballastless track structures for high-speed railway lines.


Author(s):  
Zhihui Zhu ◽  
Yongjiu Tang ◽  
Zhenning Ba ◽  
Kun Wang ◽  
Wei Gong

AbstractTo explore the effect of canyon topography on the seismic response of railway irregular bridge–track system that crosses a V-shaped canyon, seismic ground motions of the horizontal site and V-shaped canyon site were simulated through theoretical analysis with 12 earthquake records selected from the Pacific Earthquake Engineering Research Center (PEER) Strong Ground Motion Database matching the site condition of the bridge. Nonlinear seismic response analyses of an existing 11-span irregular simply supported railway bridge–track system were performed under the simulated spatially varying ground motions. The effects of the V-shaped canyon topography on the peak ground acceleration at bridge foundations and seismic responses of the bridge–track system were analyzed. Comparisons between the results of horizontal and V-shaped canyon sites show that the top relative displacement between adjacent piers at the junction of the incident side and the back side of the V-shaped site is almost two times that of the horizontal site, which also determines the seismic response of the fastener. The maximum displacement of the fastener occurs in the V-shaped canyon site and is 1.4 times larger than that in the horizontal site. Neglecting the effect of V-shaped canyon leads to the inappropriate assessment of the maximum seismic response of the irregular high-speed railway bridge–track system. Moreover, engineers should focus on the girder end to the left or right of the two fasteners within the distance of track seismic damage.


2020 ◽  
Vol 211 ◽  
pp. 110453 ◽  
Author(s):  
Wei Guo ◽  
Yao Hu ◽  
Hongye Gou ◽  
Qiaodan Du ◽  
Wenbin Fang ◽  
...  

2020 ◽  
Vol 23 (8) ◽  
pp. 1573-1586 ◽  
Author(s):  
Wei Guo ◽  
Xia Gao ◽  
Ping Hu ◽  
Yao Hu ◽  
Zhipeng Zhai ◽  
...  

Seismic loads pose a potential threat to the high-speed railway bridges in China, which have been rapidly developing in recent years, especially for those subjected to the near-fault earthquakes. The previous researches on high-speed railway bridges usually concern the far-field earthquake, and the damage of high-speed railway bridge–track system subjected to the near-fault earthquake has not been well studied. In this article, a seven-span high-speed railway simply supported bridge–track system is selected to explore the seismic damage features under the excitation of near-fault earthquake which possesses characteristics of obvious velocity pulse and high-frequency vibration. First, a detailed finite element model of the selected bridge–track system is established and calibrated by the experimental data and design code. Then the low-frequency pulse-type portion and the high-frequency background portion are separated from the selected eight original near-fault records, and a series of nonlinear dynamic analysis is conducted. The results show that the background portion leads to more serious damage of the bridge–track system than the pulse-type portion. Due to the high stiffness of high-speed railway bridge–track system, the background portion with high-frequency vibration characteristic produces the main part of seismic response of system. As for the damage part of system, the weakest component of the bridge–track system is the sliding layer, followed by the shear alveolar.


2019 ◽  
Vol 120 (3) ◽  
pp. 491-515 ◽  
Author(s):  
Wei Guo ◽  
Chen Zeng ◽  
Hongye Gou ◽  
Yao Hu ◽  
Hengchao Xu ◽  
...  

2019 ◽  
Vol 20 (01) ◽  
pp. 2050011 ◽  
Author(s):  
Wei Guo ◽  
Yao Hu ◽  
Wenqi Hou ◽  
Xia Gao ◽  
Dan Bu ◽  
...  

China Railway Track System II (CRTS II) slab ballastless track structure is one of commonly adopted track systems on the high-speed railway bridge, which has been found seismically vulnerable under strong earthquakes. To investigate the earthquake-induced damage mechanism of the CRTS II slab ballastless track structure, a nonlinear numerical model of typical 7-span simply supported bridge–track system was established by the finite element software OpenSees and well calibrated by the test data and relative literatures. The nonlinear time history analysis was employed to calculate seismic responses of bridge and track parts under a suite of 10 seismic records. Results demonstrate that the sliding layer in the track structure is the most damage-prone component, especially at the bridge-subgrade transition section, and the shear alveolar may also sustain earthquake-induced fail. By analyzing the seismic damage mechanism of the track structure, this paper reveals that the nonuniform displacement responses of the girders and friction plate at the bridge-subgrade transition section are main factors that result in the extensive damage of the sliding layer and failure of the shear alveolar. However, the damage of these two components are beneficial to reduce the seismic responses of other components in the track structure and protect them from being damaged. From the perspective of engineering safety, the sliding layer and shear alveolar should be rigorously designed because the residual displacement of the sliding layer increases along with the maximum displacement and the failure of the shear alveolar may make the whole track structure failed.


Sign in / Sign up

Export Citation Format

Share Document