scholarly journals Mechanical Performance of a Ballastless Track System for the Railway Bridges of High-Speed Lines: Experimental and Numerical Study under Thermal Loading

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2876
Author(s):  
Yingying Zhang ◽  
Lingyu Zhou ◽  
Akim D. Mahunon ◽  
Guangchao Zhang ◽  
Xiusheng Peng ◽  
...  

The mechanical performance of China Railway Track System type II (CRTS II) ballastless track suitable for High-Speed Railway (HSR) bridges is investigated in this project by testing a one-quarter-scaled three-span specimen under thermal loading. Stress analysis was performed both experimentally and numerically, via finite-element modeling in the latter case. The results showed that strains in the track slab, in the cement-emulsified asphalt (CA) mortar and in the track bed, increased nonlinearly with the temperature increase. In the longitudinal direction, the zero-displacement section between the track slab and the track bed was close to the 1/8L section of the beam, while the zero-displacement section between the track slab and the box girder bridge was close to the 3/8L section. The maximum values of the relative vertical displacement between the track bed and the bridge structure occurred in the section at three-quarters of the span. Numerical analysis showed that the lower the temperature, the larger the tensile stresses occurring in the different layers of the track structure, whereas the higher the temperature, the higher the relative displacement between the track system and the box girder bridge. Consequently, quantifying the stresses in the various components of the track structure resulting from sudden temperature drops and evaluating the relative displacements between the rails and the track bed resulting from high-temperature are helpful in the design of ballastless track structures for high-speed railway lines.

2019 ◽  
Vol 20 (01) ◽  
pp. 2050011 ◽  
Author(s):  
Wei Guo ◽  
Yao Hu ◽  
Wenqi Hou ◽  
Xia Gao ◽  
Dan Bu ◽  
...  

China Railway Track System II (CRTS II) slab ballastless track structure is one of commonly adopted track systems on the high-speed railway bridge, which has been found seismically vulnerable under strong earthquakes. To investigate the earthquake-induced damage mechanism of the CRTS II slab ballastless track structure, a nonlinear numerical model of typical 7-span simply supported bridge–track system was established by the finite element software OpenSees and well calibrated by the test data and relative literatures. The nonlinear time history analysis was employed to calculate seismic responses of bridge and track parts under a suite of 10 seismic records. Results demonstrate that the sliding layer in the track structure is the most damage-prone component, especially at the bridge-subgrade transition section, and the shear alveolar may also sustain earthquake-induced fail. By analyzing the seismic damage mechanism of the track structure, this paper reveals that the nonuniform displacement responses of the girders and friction plate at the bridge-subgrade transition section are main factors that result in the extensive damage of the sliding layer and failure of the shear alveolar. However, the damage of these two components are beneficial to reduce the seismic responses of other components in the track structure and protect them from being damaged. From the perspective of engineering safety, the sliding layer and shear alveolar should be rigorously designed because the residual displacement of the sliding layer increases along with the maximum displacement and the failure of the shear alveolar may make the whole track structure failed.


2020 ◽  
Vol 28 (3) ◽  
pp. 213-231
Author(s):  
Wanming Zhai ◽  
Kaiyun Wang ◽  
Zhaowei Chen ◽  
Shengyang Zhu ◽  
Chengbiao Cai ◽  
...  

Abstract Motivated by the huge practical engineering demand for the fundamental understanding of mechanical characteristics of high-speed railway infrastructure, a full-scale multi-functional test platform for high-speed railway track–subgrade system is developed in this paper, and its main functions for investigating the mechanical performance of track–subgrade systems are elaborated with three typical experimental examples. Comprising the full-scale subgrade structure and all the five types of track structures adopted in Chinese high-speed railways, namely the CRTS I, the CRTS II and the CRTS III ballastless tracks, the double-block ballastless track and the ballasted track, the test platform is established strictly according to the construction standard of Chinese high-speed railways. Three kinds of effective loading methods are employed, including the real bogie loading, multi-point loading and the impact loading. Various types of sensors are adopted in different components of the five types of track–subgrade systems to measure the displacement, acceleration, pressure, structural strain and deformation, etc. Utilizing this test platform, both dynamic characteristics and long-term performance evolution of high-speed railway track–subgrade systems can be investigated, being able to satisfy the actual demand for large-scale operation of Chinese high-speed railways. As examples, three typical experimental studies are presented to elucidate the comprehensive functionalities of the full-scale multi-functional test platform for exploring the dynamic performance and its long-term evolution of ballastless track systems and for studying the long-term accumulative settlement of the ballasted track–subgrade system in high-speed railways. Some interesting phenomena and meaningful results are captured by the developed test platform, which provide a useful guidance for the scientific operation and maintenance of high-speed railway infrastructure.


2013 ◽  
Vol 443 ◽  
pp. 69-73
Author(s):  
Xiang Min Li ◽  
Suo Yan Zhang ◽  
Jun Liu

At present ballastless track has been widely applied to railway line for passenger in our country, therefore it has broad prospect. Cracks in ballastless track slabs are inevitable in the construction and operation of high-speed railway. Based on comprehensive investigation of documents, and taking cracks in ballastless track slabs as the main object, systematic and deep research has been done within this paper. The main research contents are as follows: First of all, the structure characteristics of CRTSIII ballastless track in high-speed railway are briefly introduced; Secondly, the paper mostly introduces the impacts what cracks make, the characteristics of cracks and how they form. Subsequently the paper introduces what are made to prevent cracks.


2017 ◽  
Vol 1142 ◽  
pp. 334-339
Author(s):  
Heng Qiong Jia ◽  
Tao Wang ◽  
Zhao Wei

For construction method of infusion bag, expansion of CRTSⅠCA mortar on site by core drilling, water absorption, chloride ion permeability and frost resistance and other properties were studied in comparison with performance of mortar in laboratory under standard curing. The results showed that expansion of the mortar on site was 2%, water absorption was 0.5%, charge amount was 210C, quality loss after 300 freeze-thaw cycles was -1.1%, the performance was much better than molded mortar in laboratory. Pore structure analysis showed that the internal pore diameter of the mortar on site was about 150μm, pore content was 9% to 12%; the internal pore diameter of the mortar in laboratory was also about 150μm, pore content was 10% to 15%. China railway track system(CRTSⅠ)slab ballastless track is one of the main structure forms of the modern high-speed railway and mainly composed of concrete basement, the Cement-emulsified Asphalt Mortar layer and concrete slab, featured by its rapid construction, convenient maintenance, and so on, has been widely applied in high-speed railway construction in our country. The cement-emulsified asphalt(CA) Mortar is one of the key materials and structures in slab ballastless track, providing the appropriate stiffness and elasticity which is usually composed of cement, emulsified asphalt, grit, water and many types of additives, containing a variety of inorganic/organic compositions and many types of surfactants, through the special bag, filling inside the flat cavity by its own weight between track slab and concrete basement with a thickness of 50mm (length×width 4962 mm×2400 mm). The construction method of CA mortar is grouting the non-woven fabrics bag after setting the bag under the track slab fixed by fine adjustment claw, which is convenient and has no requirement of mould removal. The bag is fixed before the perfusion process and does not produce wrinkles. The method greatly enhances the construction efficiency and has been widely utilized in high-speed railway. To full perfusion and tightness with track board, CA mortar contains gas former and expands after the end of infusion in a restricted state. Non-woven fabrics bag itself with breathable permeable, a small amount of water seeps around infusion bags in a period of time after the end of the infusion. Theoretically free water seepage of mortar on the one hand increases the compactness and durability of the mortar, but on the other hand will reduce the mortar expansion; the quality of filling layer mortar can meet the acceptance requirements in the engineering practice. In the same raw materials and mortar mixing, the performance of fresh mortar can require CRTSⅠ type of slab track emulsified asphalt cement mortar in high-speed railway Q / CR 469-2015. After water seepage performance of hardening mortar on site is different from laboratory mortar, because the surface of laboratory mortar is without compression and free deformation. In this paper, contrast mortar on site and molded mortar in laboratory, the performance of hardened mortar on site were studied.


2020 ◽  
Vol 211 ◽  
pp. 110453 ◽  
Author(s):  
Wei Guo ◽  
Yao Hu ◽  
Hongye Gou ◽  
Qiaodan Du ◽  
Wenbin Fang ◽  
...  

2019 ◽  
Vol 9 (21) ◽  
pp. 4496 ◽  
Author(s):  
Hongyuan Fang ◽  
Yingjie Su ◽  
Xueming Du ◽  
Fuming Wang ◽  
Bin Li

Uneven settlement of high-speed railway subgrade leads to the irregularity of high-speed railway line, which seriously affects high-speed train operation. The skylight point of high-speed railway operation is short and the maintenance time is limited. Therefore, how to quickly lift and repair the ballastless track slab in the subsidence section is an urgent problem to be solved in the maintenance of high-speed railways. The two-component non-aqueous reactive polymer material has the advantages of strong expansive force, fast reaction speed, and wide application range, which is extremely suitable for the repair of high-speed railway track slab subsidence and lifting. In this study, the expansion force characteristics of different density polymer materials and the stress-deformation curves at corresponding density are tested in laboratory to propose the mechanical parameters of polymer. Then, a three-dimensional finite element (FE) model of high-speed railway train ballastless-track subgrade is established based on ABAQUS. The mechanical characteristics of CRTS III ballastless track under different repair materials, different elevation, and different density of polymer grouting materials are analyzed. The results show that, under the dynamic load of the train, the stress value of polymer repairing material is less than that of cement slurry, presenting a compressive stress state, which is similar to that of the complete subgrade surface. In addition, within a certain thickness range, increasing the thickness of polymer is beneficial to reducing the difference of stress variation between polymer filling layer and complete pavement. Once beyond this range, the thickness of polymer has little effect on the force variation.


Sign in / Sign up

Export Citation Format

Share Document