Simplified seismic model of CRTS II ballastless track structure on high-speed railway bridges in China

2020 ◽  
Vol 211 ◽  
pp. 110453 ◽  
Author(s):  
Wei Guo ◽  
Yao Hu ◽  
Hongye Gou ◽  
Qiaodan Du ◽  
Wenbin Fang ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2876
Author(s):  
Yingying Zhang ◽  
Lingyu Zhou ◽  
Akim D. Mahunon ◽  
Guangchao Zhang ◽  
Xiusheng Peng ◽  
...  

The mechanical performance of China Railway Track System type II (CRTS II) ballastless track suitable for High-Speed Railway (HSR) bridges is investigated in this project by testing a one-quarter-scaled three-span specimen under thermal loading. Stress analysis was performed both experimentally and numerically, via finite-element modeling in the latter case. The results showed that strains in the track slab, in the cement-emulsified asphalt (CA) mortar and in the track bed, increased nonlinearly with the temperature increase. In the longitudinal direction, the zero-displacement section between the track slab and the track bed was close to the 1/8L section of the beam, while the zero-displacement section between the track slab and the box girder bridge was close to the 3/8L section. The maximum values of the relative vertical displacement between the track bed and the bridge structure occurred in the section at three-quarters of the span. Numerical analysis showed that the lower the temperature, the larger the tensile stresses occurring in the different layers of the track structure, whereas the higher the temperature, the higher the relative displacement between the track system and the box girder bridge. Consequently, quantifying the stresses in the various components of the track structure resulting from sudden temperature drops and evaluating the relative displacements between the rails and the track bed resulting from high-temperature are helpful in the design of ballastless track structures for high-speed railway lines.


2011 ◽  
Vol 255-260 ◽  
pp. 3979-3983
Author(s):  
Zhe Liu ◽  
Wang Ping

The values of longitudinal horizontal linear-stiffness of piers are very important parameters in the design of welded turnout on bridge and they can have a great impact on the force and displacement of the turnout. The layout form of turnout and bridge of welded turnout structure system on high-speed railway bridges are various, so the values of longitudinal horizontal linear-stiffness of piers have to be limited in order to insure the strength and stability of track structure on bridges and at the same time meet the requirement of comparative displacement of beam and rail, turnout proper and frog. To make the value-taking easy in the design process, a finite element model for welded turnout-bridge-platform is established in this paper, which is based on the principle of longitudinal interaction of welded turnout on bridges. Directing at three typical layout forms (No.18 single turnout+4×32m continuous beam, single crossover+6×32m continuous beam and typical throat point+4×32m continuous beam) of welded turnout and bridge on ballast track, a research of the relation between the force and displacement of turnout, and the values of longitudinal horizontal linear-stiffness of piers has been carried out. Based on the comprehensive analysis, minimal values of longitudinal horizontal linear-stiffness of piers which are suitable for these three kinds of layout forms, and the values are 1000,800 and 1600 kN/cm·double-line respectively.


2019 ◽  
Vol 9 (3) ◽  
pp. 375 ◽  
Author(s):  
Jie Zhou ◽  
Xianhua Chen ◽  
Qinghong Fu ◽  
Gang Xu ◽  
Degou Cai

The application of asphalt concrete waterproofing layer (ACWL) for the subgrade has been a trend in Chinese high-speed railway. The purpose of this research is to discuss the dynamic characteristics of full cross-section ACWL in the ballastless track structure under the train loads. The laboratory tests were conducted to evaluate the performance of the asphalt mixtures for the ACWL and a test section of ACWL was constructed on the high-speed railway in north China. The linear viscoelastic behavior of the asphalt concrete obtained from the test section was characterized by the generalized Maxwell model according to the results of dynamic modulus test. Then a 3D finite element model for the interaction system of vehicle and ballastless track structure was presented and validated by field measured data. The results indicated that the tensile strain at the bottom of the ACWL was at a relatively low level and the vertical dynamic responses of each structural layer are obviously reduced due to the application of ACWL. Therefore, the full cross-section ACWL helps to reduce the vibration of the track structure and maintain the long-term stability of the subgrade.


2019 ◽  
Vol 20 (01) ◽  
pp. 2050011 ◽  
Author(s):  
Wei Guo ◽  
Yao Hu ◽  
Wenqi Hou ◽  
Xia Gao ◽  
Dan Bu ◽  
...  

China Railway Track System II (CRTS II) slab ballastless track structure is one of commonly adopted track systems on the high-speed railway bridge, which has been found seismically vulnerable under strong earthquakes. To investigate the earthquake-induced damage mechanism of the CRTS II slab ballastless track structure, a nonlinear numerical model of typical 7-span simply supported bridge–track system was established by the finite element software OpenSees and well calibrated by the test data and relative literatures. The nonlinear time history analysis was employed to calculate seismic responses of bridge and track parts under a suite of 10 seismic records. Results demonstrate that the sliding layer in the track structure is the most damage-prone component, especially at the bridge-subgrade transition section, and the shear alveolar may also sustain earthquake-induced fail. By analyzing the seismic damage mechanism of the track structure, this paper reveals that the nonuniform displacement responses of the girders and friction plate at the bridge-subgrade transition section are main factors that result in the extensive damage of the sliding layer and failure of the shear alveolar. However, the damage of these two components are beneficial to reduce the seismic responses of other components in the track structure and protect them from being damaged. From the perspective of engineering safety, the sliding layer and shear alveolar should be rigorously designed because the residual displacement of the sliding layer increases along with the maximum displacement and the failure of the shear alveolar may make the whole track structure failed.


2016 ◽  
Vol 106 (8) ◽  
pp. 490-497
Author(s):  
Dong-Uk PARK ◽  
Jae-Bong KIM ◽  
Nam-Sik KIM ◽  
Sung-Il KIM

2011 ◽  
Vol 97-98 ◽  
pp. 3-9
Author(s):  
Yang Wang ◽  
Quan Mei Gong ◽  
Mei Fang Li

The slab track is a new sort of track structure, which has been widely used in high-speed rail and special line for passenger. However, the ballastless track structure design theory is still not perfect and can not meet the requirements of current high-speed rail and passenger line ballastless track. In this paper, composite beam method is used to calculate the deflection of the track plate and in this way the vertical supporting stress distribution of the track plate can be gotten which set a basis for the follow-up study of the dynamic stress distribution in the subgrade. Slab track plate’s bearing stress under moving load is analyzed through Matlab program. By calculation and analysis, it is found that the deflection of track plate and the rail in the double-point-supported finite beam model refers to the rate of spring coefficient of the fastener and the mortar.The supporting stress of the rail plate is inversely proportional to the supporting stress of the rail. The two boundary conditions of that model ,namely, setting the end of the model in the seams of the track plate or not , have little effect on the results. We can use the supporting stress of the track plates on state 1to get the distribution of the supporting stress in the track plate when bogies pass. Also, when the dynamic load magnification factor is 1.2, the track plate supporting stress of CRST I & CRST II-plate non-ballasted structure is around 40kPa.


Sign in / Sign up

Export Citation Format

Share Document