Low frequency vibration control of railway vehicles based on a high static low dynamic stiffness dynamic vibration absorber

2018 ◽  
Vol 62 (1) ◽  
pp. 60-69 ◽  
Author(s):  
Yu Sun ◽  
Dao Gong ◽  
JinSong Zhou ◽  
WenJing Sun ◽  
ZhangHui Xia
2021 ◽  
Author(s):  
Yu SUN ◽  
Jinsong Zhou ◽  
Dao Gong ◽  
Yuanjin Ji

Abstract To absorb the vibration of the carbody of the high-speed train in multiple degrees of freedom, a multi-degree of freedom dynamic vibration absorber (MDOF DVA) is proposed. Installed under the carbody, the natural vibration frequency of the MDOF DVA from each DOF can be designed as a DVA for each single degree of freedom of the carbody. Hence, a 12-DOF model including the main vibration system and a MDOF DVA is established, and the principle of Multi-DOF dynamic vibration absorption is analyzed by combining the design method of single DVA and genetic algorithm. Based on a high-speed train dynamics model including an under-carbody MDOF DVA, the vibration control effect on each DOF of the MDOF DVA is analyzed by the virtual excitation method. Moreover, a high static and low dynamic stiffness (HSLDS) mount is proposed based on a cam–roller–spring mechanism for the installation of the MDOF DVA due to the requirement of the low vertical dynamic stiffness. From the dynamic simulation of a non-linear model in time-domain, the vibration control performance of the MDOF DVA installed with nonlinear HSLDS mount on the carbody is analyzed. The results show that the MDOF DVA can absorb the vibration of the carbody in multiple degrees of freedom effectively, and improve the running ride quality of the vehicle.


2021 ◽  
Vol 21 (1) ◽  
pp. 15-25
Author(s):  
Rusul Saad Ahmed ◽  
Qasim Abaas Atiyah ◽  
Imad Abdlhussein Abdulsahib

Smart materials have a growing technological importance due to their unique thermomechanical characteristics. Shape memory alloys belong to this class of materials being easy to manufacture, relatively lightweight, and able to produce high forces or displacements with low power consumption. These aspects could be exploited in different applications including vibration control. A dynamic vibration absorber (DVA) can be used as an effective vibration control device. It is essentially a secondary mass, attached to an original system via a spring and damper. The natural frequency of the DVA is tuned such that it coincides with the frequency of unwanted vibration in the original system. This work aims to develop a dynamic vibration absorber with the help of shape memory alloy (SMA) springs in order to attenuate the vibration for a range of excitation frequencies. The experimental apparatus consisted of low-friction cars free to move in a rail. A shaker that provides harmonic forcing excites the system. Special attention is dedicated to the analysis of vibration reduction that can be achieved by considering different approaches exploiting temperature variations promoted either by electric current changes or by vibration absorber techniques. The results established that adaptability due to temperature variations is defined by modulus of stiffness


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042094089
Author(s):  
Shao-Hua Li ◽  
Nan Liu ◽  
Hu Ding

A negative stiffness mechanism consisting of a spring and cylinder is proposed, and a grounded dynamic vibration absorber is designed based on a quasi-zero stiffness vibration isolator to constitute the vibration isolator with a vibration absorber system. The range of parameters for attaining zero stiffness is derived from static analysis. The dynamic analysis of the vibration isolator with a vibration absorber system is carried out by a multiscale method, and the amplitude–frequency response equation of the system is obtained. The influence of different system parameters on the amplitude–frequency response is analyzed. The amplitude–frequency response of the quasi-zero stiffness vibration isolator is compared with that of the vibration isolator with a vibration absorber, and the linear and nonlinear analytical solutions of the vibration isolator with a vibration absorber system are also compared. The results show that the designed vibration isolator with a vibration absorber is an ideal choice for low-frequency vibration isolation, with no large resonance peak throughout the system and significantly improved reliability of the system.


2021 ◽  
pp. 1-13
Author(s):  
Ji-Hou Yang ◽  
Xiao-Dong Yang ◽  
Qing-Kai Han ◽  
Jinguo Liu

Abstract To improve vibration reduction effect in low-frequency band of dynamic vibration absorber (DVA), a novel type of articulated silicone gel column (SGC) is introduced in the design of the tuned dynamic vibration absorber. The nonlinear variation of frequency of SGC with varying geometry is obtained by both finite element simulation and experiments. The most sensitive mode is located, which has wider frequency range by varying the geometry. The polynomial fitting is used to describe nonlinear relation between frequency and geometry. By tuning the geometry, the equivalent stiffness and then resonance frequencies can be manipulated to behave as an active vibration absorber. The vibration reduction experiment of SGC vibration absorbers is investigated. It is found that SGC has better vibration reduction effect in low-frequency band. The experimental results in the current design demonstrate that the vibration reduction effect can reach 94.03% when tuning SCG to the first order main resonance. The dimensions and material parameters of SGC should be altered for specific frequency range and vibration strength.


Sign in / Sign up

Export Citation Format

Share Document