scholarly journals Changes of climate extremes of temperature and precipitation in summer in eastern China associated with changes in atmospheric circulation in East Asia during 1960–2008

2012 ◽  
Vol 57 (15) ◽  
pp. 1856-1861 ◽  
Author(s):  
Juan Li ◽  
WenJie Dong ◽  
ZhongWei Yan
Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2535
Author(s):  
Jintao Zhang ◽  
Fang Wang

Limiting the global temperature increase to a level that would prevent “dangerous anthropogenic interference with the climate system” is the focus of intergovernmental climate negotiations, and the cost-benefit analysis to determine this level requires an understanding of how the risk associated with climate extremes varies with different warming levels. We examine daily extreme temperature and precipitation variances with continuous global warming using a non-stationary extreme value statistical model based on the Coupled Model Intercomparison Project Phase 5 (CMIP5). Our results show the probability of extreme warm and heavy precipitation events over East Asia (EA) will increase, while that of cold extremes over EA will decrease as global warming increases. A present-day 1-in-20-year heavy precipitation extreme in EA is projected to increase to 1.3, 1.6, 2.5, and 3.4 times more frequently of the current climatology, at the global mean warming levels of 1.5 °C, 2 °C, 3 °C, and 4 °C above the preindustrial era, respectively. Moreover, the relative changes in probability are larger for rarer events. These results contribute to an improved understanding of the future risk associated with climate extremes, which helps scientists create mitigation measures for global warming and facilitates policy-making.


Author(s):  
L. V. Alexander ◽  
X. Zhang ◽  
T. C. Peterson ◽  
J. Caesar ◽  
B. Gleason ◽  
...  

2020 ◽  
Vol 141 (3-4) ◽  
pp. 1119-1133
Author(s):  
Farshad Fathian ◽  
Mohammad Ghadami ◽  
Parsa Haghighi ◽  
Mohsen Amini ◽  
Sohrab Naderi ◽  
...  

2015 ◽  
Vol 46 (7-8) ◽  
pp. 2469-2486 ◽  
Author(s):  
Changyong Park ◽  
Seung-Ki Min ◽  
Donghyun Lee ◽  
Dong-Hyun Cha ◽  
Myoung-Seok Suh ◽  
...  

2005 ◽  
Vol 277-279 ◽  
pp. 816-823
Author(s):  
Sang Hee Lee ◽  
Gi Hyuk Choi ◽  
Hyo Suk Lim ◽  
Joo Hee Lee ◽  
Kwon Ho Lee ◽  
...  

The great fires were detected through the Moderate Resolution Imaging Spectroradiometer (MODIS) observations over Northeast Asia. The large amount of smoke produced near Lake Baikal was transported to East Asia using high Aerosol Optical Thickness (AOT) as seen through the satellite images. The smoke pollution from the Russian forest fires would sometimes reach Korea through Mongolia and eastern China. In May 2003, a number of large fires blazed through eastern Russian, producing a thick, widespread pall of smoke over much of East Asia. This study focuses on the identification of the carbon monoxide (CO) for MOPITT released from MOPITT primarily into East Asia during the Russian Fires. In the wake of the fires, the 700hPa MOPITT retrieved CO concentrations which reached up to 250ppbv. Smoke aerosol retrieval using a separation technique was also applied to the MODIS data observed in 14-22 May 2003. Large AOT, 2.0 ~ 5.0, was observed over Korea on 20 May 2003 due to the influence of the long range transport of smoke aerosol plume from the Russian Fires.


Sign in / Sign up

Export Citation Format

Share Document