Pluronic Triblock Copolymer Encapsulated Gold Nanorods as Biocompatible Localized Plasmon Resonance-Enhanced Scattering Probes for Dark-Field Imaging of Cancer Cells

Plasmonics ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. 595-601 ◽  
Author(s):  
Douglas Goh ◽  
Tianxun Gong ◽  
U. S. Dinish ◽  
Kaustabh Kumar Maiti ◽  
Chit Yaw Fu ◽  
...  
2006 ◽  
Vol 45 (No. 28) ◽  
pp. L740-L743 ◽  
Author(s):  
Masami Ando ◽  
Hiroshi Sugiyama ◽  
Shu Ichihara ◽  
Tokiko Endo ◽  
Hiroko Bando ◽  
...  

Author(s):  
M. Awaji

It is necessary to improve the resolution, brightness and signal-to-noise ratio(s/n) for the detection and identification of point defects in crystals. In order to observe point defects, multi-beam dark-field imaging is one of the useful methods. Though this method can improve resolution and brightness compared with dark-field imaging by diffuse scattering, the problem of s/n still exists. In order to improve the exposure time due to the low intensity of the dark-field image and the low resolution, we discuss in this paper the bright-field high-resolution image and the corresponding subtracted image with reference to a changing noise level, and examine the possibility for in-situ observation, identification and detection of the movement of a point defect produced in the early stage of damage process by high energy electron bombardment.The high-resolution image contrast of a silicon single crystal in the [10] orientation containing a triple divacancy cluster is calculated using the Cowley-Moodie dynamical theory and for a changing gaussian noise level. This divacancy model was deduced from experimental results obtained by electron spin resonance. The calculation condition was for the lMeV Berkeley ARM operated at 800KeV.


2021 ◽  
Vol 135 ◽  
pp. 104145
Author(s):  
Yani P. Latul ◽  
Arnoud W. Kastelein ◽  
Patricia W.T. Beemster ◽  
Nienke E. van Trommel ◽  
Can Ince ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andreas P. Sauter ◽  
Jana Andrejewski ◽  
Manuela Frank ◽  
Konstantin Willer ◽  
Julia Herzen ◽  
...  

AbstractGrating-based X-ray dark-field imaging is a novel imaging modality with enormous technical progress during the last years. It enables the detection of microstructure impairment as in the healthy lung a strong dark-field signal is present due to the high number of air-tissue interfaces. Using the experience from setups for animal imaging, first studies with a human cadaver could be performed recently. Subsequently, the first dark-field scanner for in-vivo chest imaging of humans was developed. In the current study, the optimal tube voltage for dark-field radiography of the thorax in this setup was examined using an anthropomorphic chest phantom. Tube voltages of 50–125 kVp were used while maintaining a constant dose-area-product. The resulting dark-field and attenuation radiographs were evaluated in a reader study as well as objectively in terms of contrast-to-noise ratio and signal strength. We found that the optimum tube voltage for dark-field imaging is 70 kVp as here the most favorable combination of image quality, signal strength, and sharpness is present. At this voltage, a high image quality was perceived in the reader study also for attenuation radiographs, which should be sufficient for routine imaging. The results of this study are fundamental for upcoming patient studies with living humans.


Sign in / Sign up

Export Citation Format

Share Document