Modulation of OPRM1 Alternative Splicing by Morphine and HIV–1 Nef

Author(s):  
Martina Donadoni ◽  
Wenfei Huang ◽  
Shadan S. Yarandi ◽  
Tricia H. Burdo ◽  
Sulie L. Chang ◽  
...  
Keyword(s):  
2008 ◽  
Vol 83 (1) ◽  
pp. 295-303 ◽  
Author(s):  
Ariana Harari ◽  
Marcel Ooms ◽  
Lubbertus C. F. Mulder ◽  
Viviana Simon

ABSTRACT Human APOBEC3H belongs to the APOBEC3 family of cytidine deaminases that potently inhibit exogenous and endogenous retroviruses. The impact of single nucleotide polymorphisms (SNP) and alternative splicing on the antiretroviral activity of human APOBEC3H is currently unknown. In this study, we show that APOBEC3H transcripts derived from human peripheral blood mononuclear cells are polymorphic in sequence and subject to alternative splicing. We found that APOBEC3H variants encoding a SNP cluster (G105R, K121D and E178D, hapII-RDD) restricted human immunodeficiency virus type 1 (HIV-1) more efficiently than wild-type APOBEC3H (hapI-GKE). All APOBEC3H variants tested were resistant to HIV-1 Vif, the viral protein that efficiently counteracts APOBEC3G/3F activity. Alternative splicing of APOBEC3H was common and resulted in variants with distinct C-terminal regions and variable antiretroviral activities. Splice variants of hapI-GKE displayed a wide range of antiviral activities, whereas similar splicing events in hapII-RDD resulted in proteins that uniformly and efficiently restricted viral infectivity (>20-fold). Site-directed mutagenesis identified G105R in hapI-GKE and D121K in hapII-RDD as critical substitutions leading to an average additional 10-fold increase in antiviral activity. APOBEC3H variants were catalytically active and, similarly to APOBEC3F, favored a GA dinucleotide context. HIV-1 mutagenesis as a mode of action for APOBEC3H is suggested by the decrease of restriction observed with a cytidine deaminase domain mutant and the inverse correlation between G-to-A mutations and infectivity. Thus, the anti-HIV activity of APOBEC3H seems to be regulated by a combination of genomic variation and alternative splicing. Since prevalence of hapII-RDD is high in populations of African descent, these findings raise the possibility that some individuals may harbor effective as well as HIV-1 Vif-resistant intracellular antiviral defense mechanisms.


2019 ◽  
Vol 94 (4) ◽  
Author(s):  
Xiao-Liang Zhang ◽  
Meng-Ting Luo ◽  
Jia-Hao Song ◽  
Wei Pang ◽  
Yong-Tang Zheng

ABSTRACT APOBEC3 family members, particularly APOBEC3F and APOBEC3G, inhibit the replication and spread of various retroviruses by inducing hypermutation in newly synthesized viral DNA. Viral hypermutation by APOBEC3 is associated with viral evolution, viral transmission, and disease progression. In recent years, increasing attention has been paid to targeting APOBEC3G for AIDS therapy. Thus, a controllable model system using species such as macaques, which provide a relatively ideal in vivo system, is needed for the study of APOBEC3-related issues. To appropriately utilize this animal model for biomedical research, important differences between human and macaque APOBEC3s must be considered. In this study, we found that the ratio of APOBEC3G-mediated/APOBEC3-mediated HIV-1 hypermutation footprints was much lower in peripheral blood mononuclear cells (PBMCs) from northern pig-tailed macaques than in PBMCs from humans. Next, we identified a novel and conserved APOBEC3G pre-mRNA alternative splicing pattern in macaques, which differed from that in humans and resulted from an Alu element insertion into macaque APOBEC3G gene intron 1. This alternative splicing pattern generating an aberrant APOBEC3G mRNA isoform may significantly dilute full-length APOBEC3G and reduce APOBEC3G-mediated hypermutation pressure on HIV-1 in northern pig-tailed macaques, which was supported by the elimination of other possibilities accounting for this hypermutation difference between the two hosts. IMPORTANCE APOBEC3 family members, particularly APOBEC3F and APOBEC3G, are important cellular antiviral factors. Recently, more attention has been paid to targeting APOBEC3G for AIDS therapy. To appropriately utilize macaque animal models for the study of APOBEC3-related issues, it is important that the differences between human and macaque APOBEC3s are clarified. In this study, we identified a novel and conserved APOBEC3G pre-mRNA alternative splicing pattern in macaques, which differed from that in humans and which may reduce the APOBEC3G-mediated hypermutation pressure on HIV-1 in northern pig-tailed macaques (NPMs). Our work provides important information for the proper application of macaque animal models for APOBEC3-related issues in AIDS research and a better understanding of the biological functions of APOBEC3 proteins.


FEBS Journal ◽  
2010 ◽  
Vol 277 (4) ◽  
pp. 867-876 ◽  
Author(s):  
Jamal Tazi ◽  
Nadia Bakkour ◽  
Virginie Marchand ◽  
Lilia Ayadi ◽  
Amina Aboufirassi ◽  
...  

2019 ◽  
Vol 93 (21) ◽  
Author(s):  
Sebla B. Kutluay ◽  
Ann Emery ◽  
Srinivasa R. Penumutchu ◽  
Dana Townsend ◽  
Kasyap Tenneti ◽  
...  

ABSTRACT Alternative splicing of HIV-1 mRNAs increases viral coding potential and controls the levels and timing of gene expression. HIV-1 splicing is regulated in part by heterogeneous nuclear ribonucleoproteins (hnRNPs) and their viral target sequences, which typically repress splicing when studied outside their native viral context. Here, we determined the location and extent of hnRNP binding to HIV-1 mRNAs and their impact on splicing in a native viral context. Notably, hnRNP A1, hnRNP A2, and hnRNP B1 bound to many dispersed sites across viral mRNAs. Conversely, hnRNP H1 bound to a few discrete purine-rich sequences, a finding that was mirrored in vitro. hnRNP H1 depletion and mutation of a prominent viral RNA hnRNP H1 binding site decreased the use of splice acceptor A1, causing a deficit in Vif expression and replicative fitness. This quantitative framework for determining the regulatory inputs governing alternative HIV-1 splicing revealed an unexpected splicing enhancer role for hnRNP H1 through binding to its target element. IMPORTANCE Alternative splicing of HIV-1 mRNAs is an essential yet quite poorly understood step of virus replication that enhances the coding potential of the viral genome and allows the temporal regulation of viral gene expression. Although HIV-1 constitutes an important model system for general studies of the regulation of alternative splicing, the inputs that determine the efficiency with which splice sites are utilized remain poorly defined. Our studies provide an experimental framework to study an essential step of HIV-1 replication more comprehensively and in much greater detail than was previously possible and reveal novel cis-acting elements regulating HIV-1 splicing.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Diako Ebrahimi ◽  
Christopher M. Richards ◽  
Michael A. Carpenter ◽  
Jiayi Wang ◽  
Terumasa Ikeda ◽  
...  

2021 ◽  
Author(s):  
Kevin Tsai ◽  
Hal P. Bogerd ◽  
Edward M. Kennedy ◽  
Ann Emery ◽  
Ronald Swanstrom ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ann Baeyens ◽  
Evelien Naessens ◽  
Anouk Van Nuffel ◽  
Karin E. Weening ◽  
Anne-Marie Reilly ◽  
...  

2006 ◽  
Vol 9 (3-4) ◽  
pp. 433-438 ◽  
Author(s):  
Stéphanie Cabal ◽  
Éric Guittet

2020 ◽  
Vol 13 (S5) ◽  
Author(s):  
Seyoun Byun ◽  
Seonggyun Han ◽  
Yue Zheng ◽  
Vicente Planelles ◽  
Younghee Lee

Sign in / Sign up

Export Citation Format

Share Document