aids therapy
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 11)

H-INDEX

22
(FIVE YEARS 2)

Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1026
Author(s):  
Thanarat Salahong ◽  
Christian Schwartz ◽  
Rungroch Sungthong

AIDS first emerged decades ago; however, its cure, i.e., eliminating all virus sources, is still unachievable. A critical burden of AIDS therapy is the evasive nature of HIV-1 in face of host immune responses, the so-called “latency.” Recently, a promising approach, the “Shock and Kill” strategy, was proposed to eliminate latently HIV-1-infected cell reservoirs. The “Shock and Kill” concept involves two crucial steps: HIV-1 reactivation from its latency stage using a latency-reversing agent (LRA) followed by host immune responses to destroy HIV-1-infected cells in combination with reinforced antiretroviral therapy to kill the progeny virus. Hence, a key challenge is to search for optimal LRAs. Looking at epigenetics of HIV-1 infection, researchers proved that some bromodomains and extra-terminal motif protein inhibitors (BETis) are able to reactivate HIV-1 from latency. However, to date, only a few BETis have shown HIV-1-reactivating functions, and none of them have yet been approved for clinical trial. In this review, we aim to demonstrate the epigenetic roles of BETis in HIV-1 infection and HIV-1-related immune responses. Possible future applications of BETis and their HIV-1-reactivating properties are summarized and discussed.


2021 ◽  
Vol 85 (2) ◽  
Author(s):  
Maelig G. Morvan ◽  
Fernando C. Teque ◽  
Christopher P. Locher ◽  
Jay A. Levy

SUMMARY The CD8+ T cell noncytotoxic antiviral response (CNAR) was discovered during studies of asymptomatic HIV-infected subjects more than 30 years ago. In contrast to CD8+ T cell cytotoxic lymphocyte (CTL) activity, CNAR suppresses HIV replication without target cell killing. This activity has characteristics of innate immunity: it acts on all retroviruses and thus is neither epitope specific nor HLA restricted. The HIV-associated CNAR does not affect other virus families. It is mediated, at least in part, by a CD8+ T cell antiviral factor (CAF) that blocks HIV transcription. A variety of assays used to measure CNAR/CAF and the effects on other retrovirus infections are described. Notably, CD8+ T cell noncytotoxic antiviral responses have now been observed with other virus families but are mediated by different cytokines. Characterizing the protein structure of CAF has been challenging despite many biologic, immunologic, and molecular studies. It represents a low-abundance protein that may be identified by future next-generation sequencing approaches. Since CNAR/CAF is a natural noncytotoxic activity, it could provide promising strategies for HIV/AIDS therapy, cure, and prevention.


2021 ◽  
Vol 11 (2) ◽  
pp. 151-154
Author(s):  
Deepak Prashar ◽  
Pooja Johri ◽  
Sanjay Kumar

The Pharmaceutical aspects of the medications are very much essential for proper drug scheduling. But the economical prospect is also essential for the proper patient compliance. These two parameters act in symbiotic relationship. Therefore, there is always the prerequisite for combining these parameters as Pharmaco-economical. This present work tries to present the Pharmaceutical medications of HIV/AIDS from economical view point/scenario.


2020 ◽  
Vol 15 ◽  
Author(s):  
Smita P. Kakad ◽  
Sanjay J. Kshirsagar

Introduction: The infiltration of HIV into the brain alters the functions of the nervous system known as NeuroAIDS. It leads to neuronal defects clinically manifested by motor and cognitive dysfunctions. Materials/Methods: Current antiretroviral therapy can prevent viral replication but cannot cure the disease completely. HAART-Highly active antiretroviral therapy used for the treatment of HIV infection. Challenges in neuro-AIDS therapy are as shown in the graphical abstract. One of the challenges is latent viral reservoirs like the brain; which acts as a sanctuary site for viruses. Nearly ~50% of HIV patients show neuropathological signs. Nervous system related disorders including AIDS dementia, sensory neuropathy, and myelopathy have a 25% of prevalence in patients having access to a highly active combination antiretroviral therapy. Results/Conclusions: Brain is one of the viral sanctuary sites for HIV. The current need of neuro-AIDS therapy is to target the brain as a viral reservoir. Drugs should cross or bypass the blood-brain barrier to reach the brain with effective concentrations. Current research on novel drug delivery approaches may prove helpful to treat neuro-AIDS and related disorders effectively.


2019 ◽  
Vol 94 (4) ◽  
Author(s):  
Xiao-Liang Zhang ◽  
Meng-Ting Luo ◽  
Jia-Hao Song ◽  
Wei Pang ◽  
Yong-Tang Zheng

ABSTRACT APOBEC3 family members, particularly APOBEC3F and APOBEC3G, inhibit the replication and spread of various retroviruses by inducing hypermutation in newly synthesized viral DNA. Viral hypermutation by APOBEC3 is associated with viral evolution, viral transmission, and disease progression. In recent years, increasing attention has been paid to targeting APOBEC3G for AIDS therapy. Thus, a controllable model system using species such as macaques, which provide a relatively ideal in vivo system, is needed for the study of APOBEC3-related issues. To appropriately utilize this animal model for biomedical research, important differences between human and macaque APOBEC3s must be considered. In this study, we found that the ratio of APOBEC3G-mediated/APOBEC3-mediated HIV-1 hypermutation footprints was much lower in peripheral blood mononuclear cells (PBMCs) from northern pig-tailed macaques than in PBMCs from humans. Next, we identified a novel and conserved APOBEC3G pre-mRNA alternative splicing pattern in macaques, which differed from that in humans and resulted from an Alu element insertion into macaque APOBEC3G gene intron 1. This alternative splicing pattern generating an aberrant APOBEC3G mRNA isoform may significantly dilute full-length APOBEC3G and reduce APOBEC3G-mediated hypermutation pressure on HIV-1 in northern pig-tailed macaques, which was supported by the elimination of other possibilities accounting for this hypermutation difference between the two hosts. IMPORTANCE APOBEC3 family members, particularly APOBEC3F and APOBEC3G, are important cellular antiviral factors. Recently, more attention has been paid to targeting APOBEC3G for AIDS therapy. To appropriately utilize macaque animal models for the study of APOBEC3-related issues, it is important that the differences between human and macaque APOBEC3s are clarified. In this study, we identified a novel and conserved APOBEC3G pre-mRNA alternative splicing pattern in macaques, which differed from that in humans and which may reduce the APOBEC3G-mediated hypermutation pressure on HIV-1 in northern pig-tailed macaques (NPMs). Our work provides important information for the proper application of macaque animal models for APOBEC3-related issues in AIDS research and a better understanding of the biological functions of APOBEC3 proteins.


2019 ◽  
Vol 46 (12) ◽  
pp. 1063-1073 ◽  
Author(s):  
Umme Laila ◽  
Muhammad Akram ◽  
Mohammad Ali Shariati ◽  
Asif Mehmmod Hashmi ◽  
Naheed Akhtar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document