scholarly journals Transcriptomic Responses of Potato to Drought Stress

2021 ◽  
Author(s):  
Ernest B. Aliche ◽  
Tim Gengler ◽  
Irma Hoendervangers ◽  
Marian Oortwijn ◽  
Christian W. B. Bachem ◽  
...  

AbstractTranscriptomic changes in plants during drought stress give insights into the mechanisms with which plants stabilise their metabolic processes in order to cope with the drought condition. In potato, understanding such drought-induced transcriptomic changes is critical because prolonged field drought interferes with tuber formation and bulking period of potato development, which eventually affects yield. We hypothesised that phenotypic drought responses of potato genotypes may be linked to differences in transcriptomic changes. Using an RNA sequencing approach, we investigated such transcriptomic changes in leaves of three cultivars (Biogold, Hansa and Lady Rosetta) under drought. We found more differentially expressed genes (DEGs) in the tolerant cultivars, Lady Rosetta and Biogold, than in the sensitive cultivar (Hansa). The differential gene expression trend reflected the phenotypic drought responses of the cultivars. For instance, we found in both Biogold and Lady Rosetta but not in Hansa, an upregulation of genes involved in carbohydrate metabolism (e.g., Alpha-glucosidase), flavonoid biosynthesis (e.g., Flavanone 3 beta-hydroxylase), lipid biosynthesis/transfer (e.g., nonspecific Lipid Transfer Proteins), heat shock proteins and secondary metabolites like phenolics and lignins. Furthermore, a prolonged drought stress resulted in reduced DEGs in Biogold and Hansa, but not in Lady Rosetta that also maintained its tuber yield under such prolonged stress suggesting a more robust drought tolerance. Our findings suggest that a synergistic expression of genes involved in several different aspects of drought response is required in order to obtain a robust tolerance.

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 246
Author(s):  
Xiangjun Zhou ◽  
Jorge Alberto Condori-Apfata ◽  
Xiaoqin Liu ◽  
Sandro Jhonatan Condori-Pacsi ◽  
Maria Valderrama Valencia ◽  
...  

Garlic (Allium sativum L.) is an economically important, monocotyledonous plant with a strong taste and odor. Drought stress adversely affects its growth, development, and yield, particularly during the bolting/bulbing stage. Herein we performed RNA-seq to assess transcriptomic changes induced by drought stress in bolting/bulbing hardneck garlic plants (Purple Glazer). We observed that drought stress significantly reduced photosynthesis rate, fresh weight, and leaf water content. Transcriptomic analysis of garlic leaves under normal conditions and drought stress led to the identification of 5215 differentially expressed genes (2748 up- and 2467 downregulated). The upregulated DEGs were primarily involved in “biological process”, “metabolic process”, “oxidation-reduction process”, carbohydrate and lipid metabolism, and “proteolysis”, whereas the downregulated DEGs were mainly involved in “biological process” and metabolism of various molecules. In addition, genes encoding abscisic acid biosynthetic and catabolic enzymes, heat shock proteins, and E3 ubiquitin ligases were significantly altered by drought stress, indicating involvement in drought tolerance. A further comparison with the DEGs related to salinity stress-treated garlic revealed 867 and 305 DEGs with a similar and reverse expression alteration tendency, respectively.


2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Isabel J. Skypala ◽  
Ricardo Asero ◽  
Domingo Barber ◽  
Lorenzo Cecchi ◽  
Arazeli Diaz Perales ◽  
...  

Author(s):  
Christine Hirschberger ◽  
Victoria A Sleight ◽  
Katharine E Criswell ◽  
Stephen J Clark ◽  
J Andrew Gillis

Abstract The origin of the jaw is a long-standing problem in vertebrate evolutionary biology. Classical hypotheses of serial homology propose that the upper and lower jaw evolved through modifications of dorsal and ventral gill arch skeletal elements, respectively. If the jaw and gill arches are derived members of a primitive branchial series, we predict that they would share common developmental patterning mechanisms. Using candidate and RNAseq/differential gene expression analyses, we find broad conservation of dorsoventral patterning mechanisms within the developing mandibular, hyoid and gill arches of a cartilaginous fish, the skate (Leucoraja erinacea). Shared features include expression of genes encoding members of the ventralising BMP and endothelin signalling pathways and their effectors, the joint markers nkx3.2 and gdf5 and pro-chondrogenic transcription factor barx1, and the dorsal territory marker pou3f3. Additionally, we find that mesenchymal expression of eya1/six1 is an ancestral feature of the mandibular arch of jawed vertebrates, while differences in notch signalling distinguish the mandibular and gill arches in skate. Comparative transcriptomic analyses of mandibular and gill arch tissues reveal additional genes differentially expressed along the dorsoventral axis of the pharyngeal arches, including scamp5 as a novel marker of the dorsal mandibular arch, as well as distinct transcriptional features of mandibular and gill arch muscle progenitors and developing gill buds. Taken together, our findings reveal conserved patterning mechanisms in the pharyngeal arches of jawed vertebrates, consistent with serial homology of their skeletal derivatives, as well as unique transcriptional features that may underpin distinct jaw and gill arch morphologies.


2017 ◽  
Vol 42 (7) ◽  
pp. 516-530 ◽  
Author(s):  
Louise H. Wong ◽  
Alenka Čopič ◽  
Tim P. Levine

Sign in / Sign up

Export Citation Format

Share Document