scholarly journals Expression of Genes Encoding Thionins and Lipid-Transfer Proteins. A Combinatorial Model for the Responses of Defense Genes to Pathogens.

1994 ◽  
pp. 235-244 ◽  
Author(s):  
Antonio Molina ◽  
Francisco García-Olmedo
2021 ◽  
Author(s):  
Ernest B. Aliche ◽  
Tim Gengler ◽  
Irma Hoendervangers ◽  
Marian Oortwijn ◽  
Christian W. B. Bachem ◽  
...  

AbstractTranscriptomic changes in plants during drought stress give insights into the mechanisms with which plants stabilise their metabolic processes in order to cope with the drought condition. In potato, understanding such drought-induced transcriptomic changes is critical because prolonged field drought interferes with tuber formation and bulking period of potato development, which eventually affects yield. We hypothesised that phenotypic drought responses of potato genotypes may be linked to differences in transcriptomic changes. Using an RNA sequencing approach, we investigated such transcriptomic changes in leaves of three cultivars (Biogold, Hansa and Lady Rosetta) under drought. We found more differentially expressed genes (DEGs) in the tolerant cultivars, Lady Rosetta and Biogold, than in the sensitive cultivar (Hansa). The differential gene expression trend reflected the phenotypic drought responses of the cultivars. For instance, we found in both Biogold and Lady Rosetta but not in Hansa, an upregulation of genes involved in carbohydrate metabolism (e.g., Alpha-glucosidase), flavonoid biosynthesis (e.g., Flavanone 3 beta-hydroxylase), lipid biosynthesis/transfer (e.g., nonspecific Lipid Transfer Proteins), heat shock proteins and secondary metabolites like phenolics and lignins. Furthermore, a prolonged drought stress resulted in reduced DEGs in Biogold and Hansa, but not in Lady Rosetta that also maintained its tuber yield under such prolonged stress suggesting a more robust drought tolerance. Our findings suggest that a synergistic expression of genes involved in several different aspects of drought response is required in order to obtain a robust tolerance.


2014 ◽  
Vol 104 (3) ◽  
pp. 293-305 ◽  
Author(s):  
Christine Tayeh ◽  
Béatrice Randoux ◽  
Dorothée Vincent ◽  
Natacha Bourdon ◽  
Philippe Reignault

Powdery mildew would be one of the most damaging wheat diseases without the extensive use of conventional fungicides. Some of the alternative control strategies currently emerging are based on the use of resistance inducers. The disacharride trehalose (TR) is classically described as an inducer of defenses in plants to abiotic stress. In this work, the elicitor or priming effect of TR was investigated in wheat both before and during a compatible wheat–powdery mildew interaction through molecular, biochemical, and cytological approaches. In noninoculated conditions, TR elicited the expression of genes encoding chitinase (chi, chi1, and chi4 precursor), pathogenesis-related protein 1, as well as oxalate oxidase (oxo). Moreover, lipid metabolism was shown to be altered by TR spraying via the upregulation of lipoxygenase (lox) and lipid-transfer protein (ltp)-encoding gene expression. On the other hand, the protection conferred by TR to wheat against powdery mildew is associated with the induction of two specific defense markers. Indeed, in infectious conditions following TR spraying, upregulations of chi4 precursor and lox gene expression as well as an induction of the LOX activity were observed. These results are also discussed with regard to the impact of TR on the fungal infectious process, which was shown to be stopped at the appressorial germ tube stage. Our findings strongly suggest that TR is a true inducer of wheat defense and resistance, at least toward powdery mildew.


Sign in / Sign up

Export Citation Format

Share Document