Estimation of temperature distribution of LiFePO4 lithium ion battery during charge–discharge process

Ionics ◽  
2016 ◽  
Vol 22 (9) ◽  
pp. 1517-1525 ◽  
Author(s):  
Liubin Song ◽  
Lingjun Li ◽  
Zhongliang Xiao ◽  
Jian Zhang ◽  
Zhong Cao ◽  
...  
2019 ◽  
Vol 964 ◽  
pp. 215-220
Author(s):  
Lukman Noerochim ◽  
Agny Muchamad Reza ◽  
Budi Agung

In this work, Fe2O3 nanooval is successfully synthesized with variation of glycine composition of 9, 12, and 15 mmol at hydrothermal temperature of 160 °C. The Fe2O3 nanooval is indexed by XRD as α-Fe2O3. SEM and TEM images show that the 12 mmol of glycine has the largest diameter with the perfect nanooval form. Nyquist plot shows that the 12 mmol of glycine sample has the best conductivity value of 8.26x10-5 S/m. The CV of sample 12 mmol delivers the best intercalate/de-intercalate with ΔV of 0.82 V. The 12 mmol sample shows the largest specific discharge capacity of 631.62 mAh/g. It is attributed to high conductivity and high kinetics reaction of Li ion during charge-discharge process. Therefore, Fe2O3 nanooval is a promising candidate as anode for lithium-ion battery.


Batteries ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 17
Author(s):  
Seyed Saeed Madani ◽  
Erik Schaltz ◽  
Søren Knudsen Kær

Thermal analysis and thermal management of lithium-ion batteries for utilization in electric vehicles is vital. In order to investigate the thermal behavior of a lithium-ion battery, a liquid cooling design is demonstrated in this research. The influence of cooling direction and conduit distribution on the thermal performance of the lithium-ion battery is analyzed. The outcomes exhibit that the appropriate flow rate for heat dissipation is dependent on different configurations for cold plate. The acceptable heat dissipation condition could be acquired by adding more cooling conduits. Moreover, it was distinguished that satisfactory cooling direction could efficiently enhance the homogeneity of temperature distribution of the lithium-ion battery.


Nanoscale ◽  
2014 ◽  
Vol 6 (17) ◽  
pp. 10243-10254 ◽  
Author(s):  
Uttam Kumar Sen ◽  
Priya Johari ◽  
Sohini Basu ◽  
Chandrani Nayak ◽  
Sagar Mitra

Experimental evidence and theoretical correlation of the formation of elemental sulphur during the discharge process of MoS2, a high rate lithium ion battery anode.


2013 ◽  
Vol 1 (30) ◽  
pp. 8672 ◽  
Author(s):  
Somaye Saadat ◽  
Jixin Zhu ◽  
Dao Hao Sim ◽  
Huey Hoon Hng ◽  
Rachid Yazami ◽  
...  

2013 ◽  
Vol 319 ◽  
pp. 373-377
Author(s):  
Chan Ming Chen ◽  
Song Hua Deng ◽  
Zhen Po Wang

To find out how depth of discharge affecting cycle life of lithium-ion power battery, an experiment was conducted. Three samples of lithium-ion were tested separately with BAITE charge/discharge equipment. Condition of test was set as the same except depth of discharge. Capacity remaining of samples was recorded during testing. Based on processing and analysis of data of the testing, cycle life model of lithium-ion power battery with parameter of depth of discharge was deduced, which was verified by the experimental data. The model provided a theoretical calculating method of cycle life, which would be helpful for precise management of the lithium-ion battery.


Sign in / Sign up

Export Citation Format

Share Document