Simulation method of near-fault pulse-type ground motion

2007 ◽  
Vol 20 (1) ◽  
pp. 80-87 ◽  
Author(s):  
Yu-ji Tian ◽  
Qing-shan Yang ◽  
Ming-qi Lu
2012 ◽  
Vol 594-597 ◽  
pp. 1688-1691
Author(s):  
Ming Li ◽  
Qiao Jin ◽  
Yong Liu ◽  
He Yuan ◽  
Zhe Zhe Sun

during the process of fitting or synthesizing near-fault ground motion,parameters of the equivalent velocity pulse need to be decided based on seismic records.Thus, it is a key problem that how to identify these parameters from the records.Pulse period and pulse peak velocity are important parameters in the equivalent velocity pulse models.In this study,various methods on identifying these parameters are reviewed.It is shown that all the existing methods have limitations,especially for the irregular seismic records.Finally,problems need to be further studied is pointed out.


2021 ◽  
pp. 875529302110003
Author(s):  
Huihui Dong ◽  
Qiang Han ◽  
Xiuli Du ◽  
Shoushan Cheng ◽  
Haifang He

Many studies on the inelastic response spectra have mainly focused on structures with the conventional hysteretic behavior. However, for self-centering structures with the flag-shaped (FS) hysteretic behavior, the corresponding study is limited. The primary aim of this study is to investigate the inelastic response spectra of self-centering structures with FS hysteretic behavior subjected to the near-fault pulse-type ground motion. To this end, the smooth FS hysteretic model based on Bouc–Wen model is developed, and the characteristics of pulse-type ground motions are described in detail. It is found that the general features of inelastic response spectra of the FS model are sensitive to the acceleration-, velocity-, and displacement-sensitive spectral regions of the ground motion. The inelastic displacement, velocity, acceleration, and ductility factor spectra of the FS hysteretic model for pulse-type ground motions are much larger than those for ordinary ground motions, while the residual displacement spectra under the two types of ground motions are both very small due to its self-centering capacity. Moreover, the inelastic response spectra are affected by the ground motion characteristics and structural hysteresis behavior, especially the large pulse period and peak ground velocity (PGV) significantly increase the inelastic displacement, velocity, and acceleration spectra.


2013 ◽  
Vol 353-356 ◽  
pp. 1867-1870
Author(s):  
Yan Li Shen ◽  
Xiu Li Du ◽  
Qing Shan Yang

For estimating seismic response of pier-structure under near-fault ground motion, The typical pulse-type near-fault ground motion records were chosen to establish a record base, and three pier models with different natural period were established; The non-elastic response spectral displacement of ground motion was used to estimate the nonlinear response; The yield displacement of the nonlinear oscillator was defined based on the static pushover analysis result, and its influence on response estimation was studied. The study result is important for structural seismic response estimation by using the non-elastic response spectral displacement and the probability-based seismic performance evaluation.


Author(s):  
Ling-Kun Chen ◽  
Peng Liu ◽  
Li-Ming Zhu ◽  
Jing-Bo Ding ◽  
Yu-Lin Feng ◽  
...  

Near-fault (NF) earthquakes cause severe bridge damage, particularly urban bridges subjected to light rail transit (LRT), which could affect the safety of the light rail transit vehicle (“light rail vehicle” or “LRV” for short). Now when a variety of studies on the fault fracture effect on the working protection of LRVs are available for the study of cars subjected to far-reaching soil motion (FFGMs), further examination is appropriate. For the first time, this paper introduced the LRV derailment mechanism caused by pulse-type near-fault ground motions (NFGMs), suggesting the concept of pulse derailment. The effects of near-fault ground motions (NFGMs) are included in an available numerical process developed for the LRV analysis of the VBI system. A simplified iterative algorithm is proposed to assess the stability and nonlinear seismic response of an LRV-reinforced concrete (RC) viaduct (LRVBRCV) system to a long-period NFGMs using the dynamic substructure method (DSM). Furthermore, a computer simulation software was developed to compute the nonlinear seismic responses of the VBI system to pulse-type NFGMs, non-pulse-type NFGMs, and FFGMs named Dynamic Interaction Analysis for Light-Rail-Vehicle Bridge System (DIALRVBS). The nonlinear bridge seismic reaction determines the impact of pulses on lateral peak earth acceleration (Ap) and lateral peak land (Vp) ratios. The analysis results quantify the effects of pulse-type NFGMs seismic responses on the LRV operations' safety. In contrast with the pulse-type non-pulse NFGMs and FFGMs, this article's research shows that pulse-type NFGM derail trains primarily via the transverse velocity pulse effect. Hence, this study's results and the proposed method can improve the LRT bridges' seismic designs.


2021 ◽  
pp. 002029402110130
Author(s):  
Guan Chen ◽  
Zhiren Zhu ◽  
Jun Hu

This study proposed a simple and effective response spectrum-compatible ground motions simulation method to mitigate the scarcity of ground motions on seismic hazard analysis base on wavelet-based multi-resolution analysis. The feasibility of the proposed method is illustrated with two recorded ground motions in El Mayor-Cucapah earthquake. The results show that the proposed method enriches the ground motions exponentially. The simulated ground motions agree well with the attenuation characteristics of seismic ground motion without modulating process. Moreover, the pseudo-acceleration response spectrum error between the recorded ground motion and the average of the simulated ground motions is 5.2%, which fulfills the requirement prescribed in Eurocode 8 for artificially simulated ground motions. Besides, the cumulative power spectra between the simulated and recorded ground motions agree well on both high- and low-frequency regions. Therefore, the proposed method offers a feasible alternative in enriching response spectrum-compatible ground motions, especially on the regions with insufficient ground motions.


Sign in / Sign up

Export Citation Format

Share Document