Preparation and mechanical properties of β-SiC nanoparticle reinforced aluminum matrix composite by a multi-step powder metallurgy process

2013 ◽  
Vol 28 (6) ◽  
pp. 1059-1063 ◽  
Author(s):  
Linong Wang ◽  
Hao Wu ◽  
Xingping Wu ◽  
Minghai Chen ◽  
Ning Liu
Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4030 ◽  
Author(s):  
Amélie Veillère ◽  
Hiroki Kurita ◽  
Akira Kawasaki ◽  
Yongfeng Lu ◽  
Jean-Marc Heintz ◽  
...  

Aluminum matrix composites reinforced with carbon fibers or diamond particles have been fabricated by a powder metallurgy process and characterized for thermal management applications. Al/C composite is a nonreactive system (absence of chemical reaction between the metallic matrix and the ceramic reinforcement) due to the presence of an alumina layer on the surface of the aluminum powder particles. In order to achieve fully dense materials and to enhance the thermo-mechanical properties of the Al/C composite materials, a semi-liquid method has been carried out with the addition of a small amount of Al-Si alloys in the Al matrix. Thermal conductivity and coefficient of thermal expansion were enhanced as compared with Al/C composites without Al-Si alloys and the experimental values were close to the ones predicted by analytical models.


2011 ◽  
Vol 319-320 ◽  
pp. 95-105 ◽  
Author(s):  
Tahir Ahmad ◽  
Othman Mamat

Copper-based microcomposites fabricated by powder metallurgy with subsequent plastic deformation have received increasing attention over recent years. These microcomposites possess good electrical conductivity in combination with high mechanical properties. The present study aims to explore potential technical merits in developing a prealloyed powder metallurgy copper based composites with silica sand nanoparticles reinforcement. Relevant mechanical properties and electrical conductivity improvements are the main targets. A copper based composite with 5, 10, 15 and 20 wt.% of silica sand nanoparticles were developed through the powder metallurgy process. It was observed that by addition of silica sand nanoparticles with 20% increased the hardness up to 143HV. Optimum electrical conductivity of the composites was achieved in the 15 wt.% silica sand nanoparticles. Advanced particle rearrangement mechanism due to homogeneous and fine distribution of silica sand nanoparticles into pore sites of the composites was also observed. The silica sand nanoparticles composites properties that are much more surface-related seen to be improved convincingly compared with the bulk controlled.


Copper matrix composite reinforced with fly ash is prepared by powder metallurgy process. Three composites with 0%, 2.5% and 5% fly ash proportion are prepared. The specimens were compacted at 450MPa and Sintered at 950℃ for a period of 30 minutes in powder metallurgy technique. The prepared specimens were subjected to different corrosion environments (alkaline and acidic) and the corroded surface will be analysed using SEM/EDX.


Sign in / Sign up

Export Citation Format

Share Document