Preparation and Characterization of Poly Lactic Acid/Graphene Oxide/Nerve Growth Factor Scaffold with Electrical Stimulation for Peripheral Nerve Regeneration in vitro

2020 ◽  
Vol 35 (6) ◽  
pp. 1149-1161
Author(s):  
Haixing Xu ◽  
Rui Li ◽  
Yiping Li ◽  
Qundi He ◽  
Xiumei Yan ◽  
...  
2016 ◽  
Vol 32 (2) ◽  
pp. 146-162 ◽  
Author(s):  
Haixing Xu ◽  
Lingxi Zhang ◽  
Yun Bao ◽  
Xiumei Yan ◽  
Yixia Yin ◽  
...  

The usage of hollow nerve conduits shows inferior recovery effect on the repair of peripheral nerve defects. In this study, a biocompatible and biodegradable pH-induced injectable chitosan–hyaluronic acid hydrogel for nerve growth factor encapsulation and sustained release was developed as the fillers in the lumen of hollow nerve conduit to reform its microenvironment for peripheral nerve regeneration. The physicochemical properties of hydrogel were characterized by gelation time, Fourier transform infrared spectroscopy, scanning electron microscopy, compressive modulus, porosity, swelling ratio, and in vitro degradation. The in vitro nerve growth factor release profiles and cell evaluation were also investigated. The results show that the structure of chitosan–hyaluronic acid hydrogel is composed of interconnected channels with a controllable pore diameter ranging from 20 to 100 µm. The hydrogel can be degraded more than 70% within 8 weeks in vitro and is available for nerve growth factor sustained release. The chitosan–hyaluronic acid/nerve growth factor hydrogel is non-toxic and suitable for adhesion and proliferation of nerve cells and capable of maintaining nerve growth factor activity. Therefore, it could be a promising intraluminal filler of nerve conduits for peripheral nerve regeneration in neural tissue engineering.


2021 ◽  
Vol 30 ◽  
pp. 096368972110210
Author(s):  
Martina Culenova ◽  
Ivana Birova ◽  
Pavol Alexy ◽  
Paulina Galfyova ◽  
Andreas Nicodemou ◽  
...  

Complex in vitro characterization of a blended material based on Poly(Lactic Acid), Poly(Hydroxybutyrate), and Thermoplastic Starch (PLA/PHB/TPS) was performed in order to evaluate its potential for application in the field of tissue engineering. We focused on the biological behavior of the material as well as its mechanical and morphological properties. We also focused on the potential of the blend to be processed by the 3D printer which would allow the fabrication of the custom-made scaffold. Several blends recipes were prepared and characterized. This material was then studied in the context of scaffold fabrication. Scaffold porosity, wettability, and cell-scaffold interaction were evaluated as well. MTT test and the direct contact cytotoxicity test were applied in order to evaluate the toxic potential of the blended material. Biocompatibility studies were performed on the human chondrocytes. According to our results, we assume that material had no toxic effect on the cell culture and therefore could be considered as biocompatible. Moreover, PLA/PHB/TPS blend is applicable for 3D printing. Printed scaffolds had highly porous morphology and were able to absorb water as well. In addition, cells could adhere and proliferate on the scaffold surface. We conclude that this blend has potential for scaffold engineering.


PLoS ONE ◽  
2018 ◽  
Vol 13 (5) ◽  
pp. e0197006 ◽  
Author(s):  
Zhiping Qi ◽  
Peng Xia ◽  
Su Pan ◽  
Shuang Zheng ◽  
Chuan Fu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document