coaxial electrospinning
Recently Published Documents


TOTAL DOCUMENTS

340
(FIVE YEARS 86)

H-INDEX

49
(FIVE YEARS 10)

2022 ◽  
pp. 152808372110542
Author(s):  
Jie Wu ◽  
Shuqiang Liu ◽  
Man Zhang ◽  
Gaihong Wu ◽  
Haidan Yu ◽  
...  

The polylactic acid (PLA)/tea polyphenol (TP) nanofiber membranes were prepared by coaxial electrospinning. The physical properties, antibacterial agent release, degradation, and antibacterial properties were investigated. Results demonstrated that stepwise and controlled antibacterial agent release profiles were achieved based on the core-shell configuration and disparate degradation rate of PLA and TP. The mechanical performance decreased with the increase of the TP content in the shell layer. The cumulative antibacterial agent release rate of nanofiber membranes with different TP content was different, while the antibacterial agent release trend was the same. The antibacterial agent release rate of the sample was the fastest at the initial stage from 2 h to 8 h, and then gradually slowed down after 24 h. In addition, the antibacterial activity of the PLA/TP nanofiber membranes was confirmed by the inhibition zone method against both Gram-positive ( Staphylococcus aureus) and Gram-negative ( Escherichia coli). Results showed that the antibacterial performance of PLA/TP nanofiber was intensified with the increasing content of TP, especially had better antibacterial performance against S. aureus.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3454
Author(s):  
Li Zeng ◽  
Hongxue Xi ◽  
Xingang Liu ◽  
Chuhong Zhang

Silicon (Si) is expected to be a high-energy anode for the next generation of lithium-ion batteries (LIBs). However, the large volume change along with the severe capacity degradation during the cycling process is still a barrier for its practical application. Herein, we successfully construct flexible silicon/carbon nanofibers with a core–shell structure via a facile coaxial electrospinning technique. The resultant Si@C nanofibers (Si@C NFs) are composed of a hard carbon shell and the Si-embedded amorphous carbon core framework demonstrates an initial reversible capacity of 1162.8 mAh g−1 at 0.1 A g−1 with a retained capacity of 762.0 mAh g−1 after 100 cycles. In addition, flexible LIBs assembled with Si@C NFs were hardly impacted under an extreme bending state, illustrating excellent electrochemical performance. The impressive performances are attributed to the high electric conductivity and structural stability of the porous carbon fibers with a hierarchical porous structure, indicating that the novel Si@C NFs fabricated using this electrospinning technique have great potential for advanced flexible energy storage.


Author(s):  
Danilo M. dos Santos ◽  
Sarah R. de Annunzio ◽  
Juliana C. Carmello ◽  
Ana C. Pavarina ◽  
Carla R. Fontana ◽  
...  

2021 ◽  
Author(s):  
Hye Jin Kim ◽  
Ji Hun Park ◽  
Syifa Salsabila ◽  
Changsang Yun

Abstract Protective clothing for health workers requires heat transfer in hot and humid environments. To study the thermal conduction of phase-change materials and protect them from leakage, we selected skin-friendly shea-butter due to its suitable melting temperature, and the electrospinning processibility of biocompatible cellulose acetate. The shea-butter as a phase-change material was encapsulated in electrospun cellulose acetate fibres within a core/sheath structure, which was stabilised by two concentric Taylor cones during coaxial electrospinning. Transmission and scanning electron microscopy revealed a blood-in-tube vessel-like morphology. Next, differential scanning calorimetry and thermogravimetric analyses confirmed the heat capacity of shea-butter (latent heat of fusion: 42.73 J/g; thermal conductivity: 1.407 W/m∙K). The flow rate of the core was proportional to the heat capacity of the shea-butter/cellulose acetate fibres. This was consistent with the finding that the electrospun fibres of the highest-ratio shea-butter (16.19%) had the highest thermal conductivity (0.421 J/g∙K). The shea-butter:cellulose acetate ratio was approximately 15:80. The efficacy of heat transfer for the core/sheath fibres in human clothing was assessed by measuring skin temperatures at 13 sites in six males aged 25 to 35 under two conditions: wearing a mask and hood with attached cellulose acetate fibres in the presence and absence of shea-butter. The mean difference in skin temperatures (0.5 ℃) between the two conditions was significant. Coaxial electrospinning of shea-butter/cellulose acetate fibres is therefore promising for protective clothing with efficient heat-transfer in the use of a large area.


2021 ◽  
pp. 51832
Author(s):  
Yong‐sheng Zhang ◽  
Cheng Yang ◽  
Wen Feng ◽  
Shan He ◽  
Jing‐hui Yang ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 802
Author(s):  
Tingbao Ning ◽  
Yangjian Zhou ◽  
Haixia Xu ◽  
Shiri Guo ◽  
Ke Wang ◽  
...  

The dissolution of poorly water-soluble drugs has been a longstanding and important issue in pharmaceutics during the past several decades. Nanotechnologies and their products have been broadly investigated for providing novel strategies for resolving this problem. In the present study, a new orodispersible membrane (OM) comprising electrospun nanofibers is developed for the fast dissolution of diclofenac sodium (DS). A modified coaxial electrospinning was implemented for the preparation of membranes, during which an unspinnable solution of sucralose was explored as the sheath working fluid for smoothing the working processes and also adjusting the taste of membranes. SEM and TEM images demonstrated that the OMs were composed of linear nanofibers with core-sheath inner structures. XRD and ATR-FTIR results suggested that DS presented in the OMs in an amorphous state due to the fine compatibility between DS and PVP. In vitro dissolution measurements and simulated artificial tongue experiments verified that the OMs were able to release the loaded DS in a pulsatile manner. The present protocols pave the way for the fast dissolution and fast action of a series of poorly water-soluble active ingredients that are suitable for oral administration.


Sign in / Sign up

Export Citation Format

Share Document