In vitro storage of micropropagated grapevine rootstocks at low temperature

2019 ◽  
Vol 55 (3) ◽  
pp. 334-341
Author(s):  
Hussein Alzubi ◽  
Luz Marcela Yepes ◽  
Marc Fuchs
2019 ◽  
pp. 57-67
Author(s):  
T.M. Tabatskaya ◽  
N.I. Vnukova

A technique for the long-term (up to 27 years) in vitro storage of valuable birch genotypes under normal (25 °C, 2.0 klx, 16-h day and 8-h night) and low temperature (4 °C, 0.5 klx, 6-h day and 18-h night) growing conditions on hormone-free media has been described. The study explored for the first time the influence of different strategies to store the clones of Betula pubescens and B. pendula var. сarelica (6 genotypes) on the regenerative capacity of collection samples, adaptive potential of regenerated plants and plant production by the in vitro and ex vitro techniques. It was established that both storage strategies provided a persistently high survival rate (82-100%) and regenerative capacity of in vitro shoots (the multiplication coefficient of 4.2-6.3 and rhizogenic activity of 90-100%). The clones retained their characteristics of height growth under the in vitro and ex vitro conditions, and demonstrated intraclonal homogeneity and lack of signs of somaclonal variability. The plants showed substantial interspecific differences at the stage of multiplication and transfer to the greenhouse. The highest percentage of acclimated plants (75-98% depending on the clone genotype) was obtained after planting of micro plants straight in the greenhouse, which simplified the technology and made plant production less costly. long-term in vitro storage, birch, species, genotype, micropropagation, ex vitro adaptation, plant material


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 934
Author(s):  
Chris O’Brien ◽  
Jayeni Hiti-Bandaralage ◽  
Raquel Folgado ◽  
Alice Hayward ◽  
Sean Lahmeyer ◽  
...  

Recent development and implementation of crop cryopreservation protocols has increased the capacity to maintain recalcitrant seeded germplasm collections via cryopreserved in vitro material. To preserve the greatest possible plant genetic resources globally for future food security and breeding programs, it is essential to integrate in situ and ex situ conservation methods into a cohesive conservation plan. In vitro storage using tissue culture and cryopreservation techniques offers promising complementary tools that can be used to promote this approach. These techniques can be employed for crops difficult or impossible to maintain in seed banks for long-term conservation. This includes woody perennial plants, recalcitrant seed crops or crops with no seeds at all and vegetatively or clonally propagated crops where seeds are not true-to-type. Many of the world’s most important crops for food, nutrition and livelihoods, are vegetatively propagated or have recalcitrant seeds. This review will look at ex situ conservation, namely field repositories and in vitro storage for some of these economically important crops, focusing on conservation strategies for avocado. To date, cultivar-specific multiplication protocols have been established for maintaining multiple avocado cultivars in tissue culture. Cryopreservation of avocado somatic embryos and somatic embryogenesis have been successful. In addition, a shoot-tip cryopreservation protocol has been developed for cryo-storage and regeneration of true-to-type clonal avocado plants.


2006 ◽  
Vol 108 (1) ◽  
pp. 91-94 ◽  
Author(s):  
J. Lora ◽  
M.A. Pérez de Oteyza ◽  
P. Fuentetaja ◽  
J.I. Hormaza

1994 ◽  
Vol 36 (3) ◽  
pp. 309-316 ◽  
Author(s):  
E. A. Zandvoort ◽  
M. J. H. Hulshof ◽  
G. Staritsky

2021 ◽  
Author(s):  
Paulo Hercilio Viegas Rodrigues ◽  
Emerson Oliveira ◽  
Christian Demetrio ◽  
Guilherme Ambrosano ◽  
Sônia Maria Stefano Piedade

Abstract Maintaining updated in vitro plant subcultures is essential for commercial micropropagation and tissue culture research. In unusual situations, the subcultures can be delay and the slow-growth in vitro storage technic could be applied to reduce the loss of plant material. The present study aimed to evaluate the slow-growth in vitro storage of banana plantlets (‘Prata Catarina’; group AAB) under different light spectra. Shoot cultures in MS medium without plant growth regulators were maintained under blue (B), red (R), red plus blue (R2B), and white (CW) light spectra (25°C ± 2°C; 50 µmol m -2 s -1 ) for up to 140 days. The plantlets maintained under the R, CW, and R2B spectra did not survive after 140 days of in vitro slow-growth storage. The plantlets maintained under the B spectrum survived after 140 days of in vitro slow-growth storage and showed little browning.


Author(s):  
Pan Zhang ◽  
Dong Qian ◽  
Changxin Luo ◽  
Yingzhi Niu ◽  
Tian Li ◽  
...  

Low temperature is a major adverse environment that affects normal plant growth. Previous reports showed that the actin cytoskeleton plays an important role in the plant response to low-temperature stress, but the regulatory mechanism of the actin cytoskeleton in this process is not clear. C-repeat binding factors (CBFs) are the key molecular switches for plants to adapt to cold stress. However, whether CBFs are involved in the regulation of the actin cytoskeleton has not been reported. We found that Arabidopsis actin depolymerizing factor 5 (ADF5), an ADF that evolved F-actin bundling function, was up-regulated at low temperatures. We also demonstrated that CBFs bound to the ADF5 promoter directly in vivo and in vitro. The cold-induced expression of ADF5 was significantly inhibited in the cbfs triple mutant. The freezing resistance of the adf5 knockout mutant was weaker than that of wild type (WT) with or without cold acclimation. After low-temperature treatment, the actin cytoskeleton of WT was relatively stable, but the actin cytoskeletons of adf5, cbfs, and adf5 cbfs were disturbed to varying degrees. Compared to WT, the endocytosis rate of the amphiphilic styryl dye FM4-64 in adf5, cbfs, and adf5 cbfs at low temperature was significantly reduced. In conclusion, CBFs directly combine with the CRT/DRE DNA regulatory element of the ADF5 promoter after low-temperature stress to transcriptionally activate the expression of ADF5; ADF5 further regulates the actin cytoskeleton dynamics to participate in the regulation of plant adaptation to a low-temperature environment.


Sign in / Sign up

Export Citation Format

Share Document