scholarly journals Arabidopsis ADF5 Acts as a Downstream Target Gene of CBFs in Response to Low-Temperature Stress

Author(s):  
Pan Zhang ◽  
Dong Qian ◽  
Changxin Luo ◽  
Yingzhi Niu ◽  
Tian Li ◽  
...  

Low temperature is a major adverse environment that affects normal plant growth. Previous reports showed that the actin cytoskeleton plays an important role in the plant response to low-temperature stress, but the regulatory mechanism of the actin cytoskeleton in this process is not clear. C-repeat binding factors (CBFs) are the key molecular switches for plants to adapt to cold stress. However, whether CBFs are involved in the regulation of the actin cytoskeleton has not been reported. We found that Arabidopsis actin depolymerizing factor 5 (ADF5), an ADF that evolved F-actin bundling function, was up-regulated at low temperatures. We also demonstrated that CBFs bound to the ADF5 promoter directly in vivo and in vitro. The cold-induced expression of ADF5 was significantly inhibited in the cbfs triple mutant. The freezing resistance of the adf5 knockout mutant was weaker than that of wild type (WT) with or without cold acclimation. After low-temperature treatment, the actin cytoskeleton of WT was relatively stable, but the actin cytoskeletons of adf5, cbfs, and adf5 cbfs were disturbed to varying degrees. Compared to WT, the endocytosis rate of the amphiphilic styryl dye FM4-64 in adf5, cbfs, and adf5 cbfs at low temperature was significantly reduced. In conclusion, CBFs directly combine with the CRT/DRE DNA regulatory element of the ADF5 promoter after low-temperature stress to transcriptionally activate the expression of ADF5; ADF5 further regulates the actin cytoskeleton dynamics to participate in the regulation of plant adaptation to a low-temperature environment.

1988 ◽  
Vol 66 (8) ◽  
pp. 1610-1615 ◽  
Author(s):  
D. A. Gaudet ◽  
T. H. H. Chen

The relationship between snow mold resistance and freezing resistance was studied under controlled-environment conditions, using winter wheat (Triticum aestivum L. em. Thell) cultivars varying in freezing resistance and resistance to cottony snow mold (Coprinus psychromorbidus Redhead & Traquair). Cultivars varying in freezing resistance were equally susceptible to C. psychromorbidus. There existed a negative relationship between snow mold resistance and freezing resistance. Sublethal, subzero freezing temperatures between −3 and −12 °C predisposed the winter wheat cultivar 'Winalta' to increased damage by C. psychromorbidus. A synergistic effect resulting in increased mortality was observed when winter wheat plants received a combination of low-temperature stress and inoculation with C. psychromorbidus. In hardened winter wheat plants, sublethal levels of snow mold damage following 6 weeks incubation with C. psychromorbidus resulted in a reduction in freezing resistance or LT50 (50% killing temperature) of approximately 7 °C compared with the noninoculated controls. The possible role of low-temperature stress on the susceptibility of winter wheats to C. psychromorbidus and of snow mold infection on the retention of freezing resistance in winter wheats during winter in the central and northern Canadian prairies is discussed.


2013 ◽  
Vol 726-731 ◽  
pp. 118-121
Author(s):  
Rui Mei Li ◽  
Du Juan Xi ◽  
Yi Meng Ji ◽  
Rui Jun Duan ◽  
Jiao Liu ◽  
...  

We have constructed a vector pCAMBIA1300-CP:CBF3-35S:ICE1 and transformed into Arabidopsis. Results of PCR proved that the target genes had integrated into Arabidopsis genome. Transgenic Arabidopsis showed a bit slow growth, earlier flowering, but normal at other phenotype under 22°C with 8 h daily lights. In vitro low temperature stress tests showed that the transgenic lines were survival while the wild type was nearly dead. The transgenic plants also showed an increased proline content, SOD and POD activities under low temperature stress. The phenotype and physical evidence indicated that expression of CP:CBF3-35S:ICE1 under low temperature enhances the cold tolerance in transgenic plants.


2009 ◽  
Vol 9 (1) ◽  
pp. 77 ◽  
Author(s):  
Efrén Santos ◽  
Serge Remy ◽  
Els Thiry ◽  
Saskia Windelinckx ◽  
Rony Swennen ◽  
...  

ÈKOBIOTEH ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 369-377
Author(s):  
N.A. Yegorova ◽  
◽  
I.V. Stavtseva ◽  

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 771E-771
Author(s):  
Tianna W. Weathington* ◽  
DeviPrasad V. Potluri

Axillary bud cultures of sweetpotato Ipomoea batatus L. [cultivars comensal and salyboro] were propagated in vitro. Nodal cultures of these were grown at different temperatures ranging from 10 °C to 30 °C at 5 °C intervals from the time of axillary bud transfer to 10 weeks of growth in a controlled growth chamber. After 10 weeks of growth, morphological and physiological parameters were measured including shoot height, number of nodes and branches, levels of proline, soluble carbohydrate and protein. There was not much difference in the cultures grown at 25 and 30 °C but temperatures lower than 25 °C were inhibitory to both cultivars, though the effects were more pronounced in salyboro than comensal. Salyboro grew slower and exhibited leaf discoloration, weak stems, and poor root growth. Proline levels increased in both cultivars and the increase was higher in shoot than root due to low temperature stress. Soluble carbohydrates and proteins increased in comensal, maintaining the carbohydrate protein ratio, but decreased in salyboro. The results suggest that the cultivar comensal may tolerate cooler temperatures and the cultivar salyboro is susceptible to them.


1998 ◽  
Vol 78 (4) ◽  
pp. 689-695 ◽  
Author(s):  
S. F. Hwang ◽  
D. A. Gaudet

The effects of sub-lethal low temperatures on predisposing first-year alfalfa plants to infection by the low temperature basidiomycete (LTB), and the effects of sub-lethal winter crown rot levels on alfalfa cold hardiness were evaluated in controlled environment and field studies. Alfalfa, subjected to the sublethal stress temperature of –7.5 °C for 1 to 5 wk and inoculated with LTB, exhibited higher mortality, lower shoot dry weights, and higher winter crown rot levels than alfalfa similarly inoculated but non-stressed. Inoculation and incubation of alfalfa with the LTB fungus for 4 wk decreased the freezing resistance of cv. Barrier and cv. Peace alfalfa by 26 and 32%, respectively, compared with the non-inoculated controls. Following inoculation and incubation with LTB, stress temperatures between −6 and −15 °C increased LTB induced mortality in Barrier by 17–54% and in Peace by 10–75%. These results demonstrate that sub-lethal low-temperature stress can act synergistically with winter crown rot pathogen to reduce survival and yield in first-year alfalfa. Key words: Medicago sativa L., alfalfa, low temperature, winter crown rot, Coprinus psychromorbidus


2019 ◽  
Vol 26 (2) ◽  
pp. 280
Author(s):  
Penglei JIANG ◽  
Yingdi SHI ◽  
Yanwen HOU ◽  
Bingshe HAN ◽  
Junfang ZHANG

2014 ◽  
Vol 39 (1) ◽  
pp. 26-30 ◽  
Author(s):  
Yu-zhi QIN ◽  
Jue CHEN ◽  
Zhen XING ◽  
Chang-zheng HE ◽  
Xing-yao XIONG

Sign in / Sign up

Export Citation Format

Share Document