scholarly journals Spike morphology alternations in androgenic progeny of hexaploid triticale (× Triticosecale Wittmack) caused by nullisomy of 2R and 5R chromosomes

2019 ◽  
Vol 56 (2) ◽  
pp. 150-158
Author(s):  
Michał T. Kwiatek ◽  
Zofia Banaszak ◽  
Roksana Skowrońska ◽  
Danuta Kurasiak-Popowska ◽  
Sylwia Mikołajczyk ◽  
...  

AbstractInduction of androgenesis, followed by chromosome doubling, is a crucial method to obtain complete homozygosity in one-generation route. However, in vitro androgenesis can result in various genetic and epigenetic changes in derived triticale plants. In this study, we evaluated chromosome alternations and we associated them with the changes of spike morphology in androgenic progeny of triticale. We karyotyped offspring plants that derived from double haploid plants using fluorescence in situ hybridization techniques. We distinguished four major groups of karyotypes: double ditelosomics, nullisomics N2R, nullisomics N5R, and triticale plants with a complete set of chromosomes. It is known that more than half of QTLs connected with androgenic response are located in R-genome of triticale but 2R, 5R, and 6R chromosomes are not included. We hypothesized that the reason why only aberrations of chromosomes 2R and 5R appear during androgenesis of triticale is that because these chromosomes are not involved in the stimulation of androgenic response and the following regeneration of plants is not disrupted. Concerning the established groups, we evaluated following quantitative traits: spike length, number of spikes per plant, number of spikelets per spike, and number of grains per spike. The nullisomy of chromosome 2R and 5R resulted in vast changes in spike architecture of triticale plants, which can be correlated with the location of major QTLs for spike morphology traits on these chromosomes. The spikes of nullisomic plants had significantly decreased spike length which correlated with the reduction of number of spikelets per spike and number of grains per spike.

1987 ◽  
Vol 63 (5) ◽  
pp. 2008-2014 ◽  
Author(s):  
T. M. Murphy ◽  
N. M. Munoz ◽  
C. A. Hirshman ◽  
J. S. Blake ◽  
A. R. Leff

The comparative effects of contractile agonists and physiological stimulation of the tracheal and bronchial smooth muscle (BSM) response were studied isometrically in situ in five Basenji-greyhound (BG) and six mongrel dogs. Frequency-response curves generated by bilateral stimulation of the vagus nerves (0–20 Hz, 15–20 V, 2-ms duration) elicited greater maximal contraction in mongrel trachea (36.8 +/- 8.1 vs. 26.9 +/- 4.0 g/cm; P less than 0.02) and exhibited greater responsiveness in mongrel BSM (half-maximal response to electrical stimulation 3.0 +/- 1.1 vs. 7.0 +/- 0.5 Hz; P less than 0.05) compared with BG dogs. However, muscarinic sensitivity to intravenous methacholine (MCh) was substantially greater in BG dogs; MCh caused contraction greater than 1.5 g/cm at a mean dose of 3.0 X 10(-10) mol/kg for BG dogs compared with 5.1 X 10(-9) mol/kg for mongrel controls (P less than 0.03, Mann-Whitney rank-sum test). In contrast to the muscarinic response, the contractile response elicited by intravenous norepinephrine after beta-adrenergic blockade was similar in trachea and bronchus for both mongrel and BG dogs. Our data confirm previous in vitro demonstration of tracheal hyporesponsiveness in BG dogs and demonstrate that the contraction resulting from efferent parasympathetic stimulation is less in the BG than mongrel dogs. However, postsynaptic muscarinic responsiveness of BG BSM is substantially increased. We conclude that a component of airway responsiveness in BG dogs depends directly on contractile forces generated postsynaptically that are nongeometry dependent, postjunctional, and agonist specific.


1994 ◽  
Vol 266 (2) ◽  
pp. E186-E192 ◽  
Author(s):  
J. Gao ◽  
E. A. Gulve ◽  
J. O. Holloszy

The insulin sensitivity of glucose transport is enhanced in skeletal muscle after a bout of exercise. In a previous study, stimulation of washed muscles to contract in vitro, in contrast to exercise, did not result in an increase in insulin sensitivity. The purpose of the present study was to explain this apparent discrepancy. We found that, although rat epitrochlearis muscles stimulated to contract in vitro after 15 min of incubation in Krebs-Henseleit buffer did not develop increased insulin sensitivity, muscles stimulated to contract immediately after being dissected showed a small but significant enhancement of the stimulation of 3-O-methyl-D-glucose transport by 30 microU/ml insulin. Furthermore, muscles stimulated to contract in situ and then allowed to recover in vitro showed as large an increase in insulin sensitivity as that which occurs after a bout of swimming. To follow up these findings suggesting involvement of a humoral factor, we incubated epitrochlearis muscles in serum before and during contractile activity in vitro. Epitrochlearis muscle insulin sensitivity was enhanced to as great an extent after in vitro contractile activity in serum as after swimming. Experiments involving charcoal treatment, ultrafiltration, or trypsin digestion provided evidence that the serum factor that interacts with contractions to enhance insulin sensitivity is a protein.


1996 ◽  
Vol 270 (3) ◽  
pp. R599-R604 ◽  
Author(s):  
S. Nilsson ◽  
M. E. Forster ◽  
W. Davison ◽  
M. Axelsson

The mechanisms of splenic control in the Antarctic fish, Pagothenia borchgrevinki, were investigated using isolated spleen and mesenteric artery strips in vitro and perfused spleen preparations in situ. Splenosomatic index (SSI) [100 x (spleen wt/body wt)] and hematocrit were determined in animals treated with atropine and phentolamine. Atropine injection increased the SSI from 0.60 +/- 0.06 to 0.89 +/- 0.04, whereas phentolamine decreased SSI to 0.45 +/- 0.03. In atropine-injected fish, hematocrit was 18.6 +/- 1.4 before and 6.6 +/- 0.8% 3 h after injection. Electrical stimulation of the splenic nerves produced biphasic flow responses. In 11 of 12 tested preparations, atropine (3 x 10(-7) to 10(-6) M) abolished the response, suggesting a major cholinergic component in the splenic innervation. Isolated spleen strip preparations contracted in response to carbachol, a response that was antagonized by atropine. The response to acetylcholine was markedly enhanced by the specific cholinesterase inhibitor BW-284c51. Catecholamine effects were somewhat irregular, and maximal contraction force with epinephrine and norepinephrine was 41 and 56%, respectively, of the carbachol response. The results suggest a mainly, if not solely, cholinergic autonomic control of the borch spleen, and a major function of the cholinergic innervation in the control of hematocrit in this species.


1986 ◽  
Vol 237 (1) ◽  
pp. 117-122 ◽  
Author(s):  
I K Campbell ◽  
P J Roughley ◽  
J S Mort

Interleukin 1 stimulation of human articular cartilage in organ culture produced the concomitant release of proteoglycan fragments and latent metalloproteinase. The released fragments ranged in size from that of almost intact proteoglycan subunits to the product of limiting digestion generated by the activated metalloproteinase. None of the fragments possessed the ability to interact with hyaluronic acid. Analysis of proteoglycan aggregate digested with the activated metalloproteinase showed that isolated hyaluronic acid-binding regions were produced from the proteoglycan subunits, and that the two higher-Mr link-protein components (Mr 48,000 and 44,000) were converted into the lowest-Mr component (Mr 41,000). Link protein extracted from cartilage under stimulation with interleukin 1 showed a similar conversion. These results suggest that interleukin 1 stimulates the release of latent metalloproteinase from chondrocytes and that a proportion of the enzyme is activated in situ in the cartilage matrix. The mode of action of the activated enzyme is compatible with a role in the changes in proteoglycan structure seen in aging.


1995 ◽  
Vol 108 (6) ◽  
pp. 2221-2230
Author(s):  
K. Fuller ◽  
T.J. Chambers

Osteoclasts resorb the extracellular matrix of bone by secreting protons and enzymes into a circumpherentially sealed compartment between the osteoclast and the bone surface. Although the lysosomal cysteine proteinases play a major role in matrix degradation by osteoclasts, collagenase (matrix metalloproteinase-1, EC 3.4.24.7) is also required for osteoclastic bone resorption, and may be directly involved in collagen degradation in the hemivacuole. We assessed the effects of inhibitors of cysteine proteinases and collagenase on bone resorption by osteoclasts isolated from rodent bone. We found that while inhibition of cysteine proteinases strongly suppressed osteoclastic resorption, inhibitors of collagenase were without effect on the number, size, or demineralised fringe of excavations. We could find no evidence of expression of mRNA for collagenase in rat osteoclasts by in situ hybridisation, but found that it was expressed by chondrocytes, bone surface cells and osteocytes adjacent to osteoclasts. The distribution of these cells, and the correlation between increased collagenase production and increased stimulation of osteoclastic resorption in vitro by bone cells, suggests that these cells might be involved in the regulation of bone resorption in situ, and that collagenase production might play a role in this process.


Toxins ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 495 ◽  
Author(s):  
Kalliopi Mylona ◽  
Esther Garcia-Cela ◽  
Michael Sulyok ◽  
Angel Medina ◽  
Naresh Magan

Two garlic-derived compounds, Propyl Propane Thiosulfonate (PTS) and Propyl Propane Thiosulfinate (PTSO), were examined for their efficacy against mycotoxigenic Fusarium species (F. graminearum, F. langsethiae, F. verticillioides). The objectives were to assess the inhibitory effect of these compounds on growth and mycotoxin production in vitro, and in situ in artificially inoculated wheat, oats and maize with one isolate of each respectively, at different water activity (aw) conditions when stored for up to 20 days at 25 °C. In vitro, 200 ppm of either PTS or PTSO reduced fungal growth by 50–100% and mycotoxin production by >90% depending on species, mycotoxin and aw conditions on milled wheat, oats and maize respectively. PTS was generally more effective than PTSO. Deoxynivalenol (DON) and zearalenone (ZEN) were decreased by 50% with 80 ppm PTSO. One-hundred ppm of PTS reduced DON and ZEN production in wheat stored at 0.93 aw for 20 days, although contamination was still above the legislative limits. Contrasting effects on T-2/HT-2 toxin contamination of oats was found depending on aw, with PTS stimulating production under marginal conditions (0.93 aw), but at 0.95 aw effective control was achieved with 100 ppm. Treatment of stored maize inoculated with F. verticilliodies resulted in a stimulation of total fumonsins in most treatments. The potential use of such compounds for mycotoxin control in stored commodities is discussed.


1985 ◽  
Vol 249 (4) ◽  
pp. H876-H882 ◽  
Author(s):  
J. E. O'Shea ◽  
B. K. Evans

Adult Miniopterus schreibersii were anesthetized with chloroform, and in vitro preparations of cardiac chambers were prepared. Stimulation of intramural nerves in right ventricles paced at 6 Hz caused an inhibition (56.3 +/- 3.5% decrease on basal force) mediated by cholinergic nerves and an excitation (91.5 +/- 9.9% increase on basal force) mediated by adrenergic nerves. Mean pD2s (-log effective concentration, 50%) for ventricular beta-adrenoceptors and muscarinic cholinoceptors were 6.99 +/- 0.03 and 6.42 +/- 0.07, respectively. The inhibition of ventricular contractility, by nerve stimulation or exogenous acetylcholine, occurred even after blockade of beta-adrenoceptors. The results were comparable to those obtained on atria. In some experiments, the heart was perfused in situ and paced via electrodes on the ventricle: stimulation of the right vagus nerve decreased right ventricular contractility by up to 90%. The results show that, at least in this hibernating mammal, there is an adrenergic innervation of the ventricle. The presence of a cholinergic vagal innervation capable of inhibiting the basal force of ventricular contraction has not been shown in any other mammal.


1983 ◽  
Vol 32 (6) ◽  
pp. 1121-1122 ◽  
Author(s):  
V. Schreiber ◽  
I. Gregorová ◽  
Z. Tomsová ◽  
T. Přibyl ◽  
N.F. Taylor

1974 ◽  
Vol 16 (2) ◽  
pp. 333-340 ◽  
Author(s):  
S. L. K. Hsam ◽  
E. N. Larter

Reciprocal F1 triticale hybrids (× Triticosecale Wittmack) produced from crosses between primary 6x amphiploids (C1) were synthesized that differed only in their source of cytoplasm. One member of each reciprocal pair possessed hexaploid (6x) wheat cytoplasm (Triticum aestivum L. em Thell), the other, tetraploid (4x) wheat cytoplasm (T. turgidum L.). Comparisons of agronomic and reproductive behavior were made between members of reciprocal F1 pairs. Initial embryo development, embryo survival in vitro, and survival of F1 wheat-rye hybrids were 10, 105, and 127% higher respectively when the female parent possessed 6x as compared with 4x wheat cytoplasm. Similarly, F1 amphiploids with 6x cytoplasm were 3.0% taller and developed 25.0% more fertile tillers than their genetically identical counterparts with 4x cytoplasm. Spike morphology and floret number were not found to be influenced by source of cytoplasm. As current triticale procedures require the synthesis of new wheat-rye amphiploids for the introduction of genetic variability, it is suggested that the utilization of 6x wheat cytoplasm would enhance such a program as well as improve the agronomic performance of triticales so synthesized.


Sign in / Sign up

Export Citation Format

Share Document