Time-dependent squeezing deformation mechanism of tunnels in layered soft-rock stratum under high geo-stress

2021 ◽  
Vol 18 (5) ◽  
pp. 1371-1390
Author(s):  
Zi-quan Chen ◽  
Chuan He ◽  
Jun Wang ◽  
Chun-chi Ma
2020 ◽  
Vol 20 (3) ◽  
pp. 04019186 ◽  
Author(s):  
Jin Yu ◽  
Gengyun Liu ◽  
Yanyan Cai ◽  
Jianfeng Zhou ◽  
Shiyu Liu ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Hong-di Jing ◽  
Yuan-hui Li ◽  
Kun-meng Li

In order to study the deformation mechanism of soft rock roadway in underground mines, it is necessary not only to study the influence of the dynamic disturbance caused by the cyclic mining blasting vibration on the stability of the soft rock roadway but also to study the degradation of the roadway surrounding rock itself and other factors. The paper presented a synthetic research system to investigate the factors that influence roadway rock structure deterioration in Baoguo Iron Mine. Firstly, the stability of rock mass was analyzed from the perspective of the physical and structural characteristics of the rock mass. Afterwards, according to monitoring data of mining blasting vibration, a suitable safety blasting prediction model for Baoguo Iron Mine was determined. And then, combining the results of mining blasting vibration monitoring and deformation monitoring, the effect of cyclic mining blasting on the stability of the soft rock roadway was obtained. By systematically studying the intrinsic factors of rock quality degradation and external environmental disturbances and their interactions, this paper comprehensively explores the deformation mechanism of soft rock roadway and provides the support for fundamentally solving the large deformation problems of soft rock roadway in underground mines.


1998 ◽  
pp. 1-10 ◽  
Author(s):  
Toshihisa Adachi ◽  
Fusao Oka ◽  
Hiroshi Soraoka ◽  
Masashi Koike

Author(s):  
Hebing Luan ◽  
Dezhong Kong ◽  
Zhaohui Wang ◽  
Weishun Sun

2013 ◽  
Vol 401-403 ◽  
pp. 2221-2225
Author(s):  
Shu Jiang Zhao

For the soft rock roadwaysupporting problems, using the conventional methods cannot effectively controlthe deformation and failure. This paper took B103W01 transport gateway projectin Shajihai coal mine as example and analyzed its deformation failure reasonand deformation mechanism and determined the specific measures of transformingcompound mechanism of deformation mechanics into a single type. In the end, weput forward coupling support technology of constant resistance and largedeformation bolt + hollow grouting anchor + corner grouting steel pipe, whichhad been applied to engineering practice. The monitoring results showed thatthe supporting effect was good. So it can be used for reference for the similarconditions of roadway supporting.


2014 ◽  
Vol 638-640 ◽  
pp. 794-797
Author(s):  
Fei Pan ◽  
Sheng Guo Cheng

With the development of transportation construction, soft rock tunnel with high geostress construction has become a key problem to overcome of traffic engineering construction. In order to explore the deformation mechanism and control technology of soft rock tunnel with high geostress, Xiakou tunnel engineering as an example, the geological characteristics and deformation characteristics of the tunnel were analyzed, to obtain the deformation mechanism of soft rock tunnels with high geostress, and to develop deformation control technology, the results provide a basis and reference for the domestic and foreign the similar engineering construction.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yongdong Wang ◽  
Haitao Jiang ◽  
Xin Yan ◽  
Huiru Liang ◽  
Guoan Li ◽  
...  

A carbonaceous mudstone tunnel is a type of soft rock tunnel. There is little research on the prevention and control measures for the deformation and failure of carbonaceous mudstone tunnels. In this article, we investigated the construction of the Qiguding carbonaceous mudstone tunnel in Meizhou City, Guangdong Province, China. We monitored and analyzed the deformation and stress characteristics of a section under the original support scheme. The monitoring data showed that this section had large peripheral convergence, vault subsidence, steel arch strain, and concrete strain. The deformations exhibited significant differences in the horizontal and vertical directions, eventually resulting in concrete cracking, steel arch bulging, and distortion in the section. The analysis showed that the primary mechanisms for the failure were the softening characteristics of the carbonaceous mudstone, the plastic rheology, and the shear slip of the rock stratum. Based on a comparative analysis and numerical simulation, we proposed a new support measure called the longitudinal rigid enlarged foundation that consists of a steel arch longitudinal connection system and a locking foot anchor pipe system. Several comparative tests were performed at the tunnel site. The results demonstrated the excellent performance and reliability of the proposed support scheme for the deformation control of the carbonaceous mudstone, providing a reference for similar projects.


2013 ◽  
Vol 734-737 ◽  
pp. 732-736
Author(s):  
Hua Wen Lv

The soft rock stratum, possessing the characteristics of poor anchorage and large deformation, is frequently encountered in underground coal excavation where stability of the whole mining structure is always affected by the soft rock. Therefore, the bolt-grouting support technology in pursuit of an effective way for stability control of soft rock chamber of coal mine in china is conducted. Meanwhile, strata behaviors monitoring is carried out in the chamber to verify effect of bolt-grouting support. The results demonstrate that bolt-grouting goes well in soft rock chamber support.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xiaoxu Tian ◽  
Zhanping Song ◽  
Guannan Zhou ◽  
Xiaowei Zhang

During the construction of the tunnel in soft stratum, it is often found that the unsupported span is too large, resulting in instability of the tunnel face and collapse of the vault. However, the unsupported span was often selected according to the experience of engineers in the actual construction process, which was lack of the theoretical basis. Therefore, based on the calculation model of the surrounding rock pressure of shallow buried tunnel, this paper analyzed the stability of the tunnel face and the vault and then obtained the calculation formula of the unsupported span of the shallow buried tunnel in soft rock stratum. It was pointed out that the unsupported span is not determined by the arch crown stability or the tunnel face stability alone, but by both. The rationality of the formula was verified by a centrifugal test and an engineering case. The analysis and discussion showed that the unsupported span is sensitive to the cohesion and internal friction angle of the rock-soil mass, especially the cohesion. The unsupported span of the shallow buried tunnel in the soft rock stratum is a linear function of the support pressure. The support pressure has a more significant contribution to the increase of the unsupported span by the centre cross diaphragm (CRD) method, and the unsupported span increases linearly with the increase of the support pressure. The research results provide a theoretical reference for the determination of the unsupported span for the shallow tunnel in the soft stratum.


Sign in / Sign up

Export Citation Format

Share Document