Effects of Variable Jet Nozzle Angles on Cross-Flow Suppression and Heat Transfer Enhancement of Swirl Chamber

2022 ◽  
Vol 31 (1) ◽  
pp. 214-223
Author(s):  
Kun Xiao ◽  
Juan He ◽  
Zhenping Feng
Author(s):  
Hai-yong Liu ◽  
Cun-liang Liu ◽  
Lin Ye

To evaluate the application of the impingement cooling in a trapezoidal duct, particularly the influence on internal cooling of the cross flow and swirl flow. Experimental and numerical studies have been performed. The experiment focuses on the heat transfer characteristics in the duct, when the numerical simulation focuses on the flow characteristics. Four Reynolds numbers (10000, 20000, 30000 and 40000), six cross flow mass flow ratios (0, 0.1, 0.2, 0.3, 0.4 and 0.5) and two impingement angle (35° and 45°) are considered in both the experiment and the numerical simulation. The temperature on the target wall and the exit side wall is measured by the thermocouples, when the realizable k-ε turbulence model and enhanced wall treatment are performed using a commercial code Fluent. The results show that only part of the jets contribute in the heat transfer enhancement on the target wall, the other jets improve a large anticlockwise vortex occupied the upper part of the duct and drive strong swirl flow. The heat transfer on the exit side wall is enhanced by the swirl flow. The cross flow is induced in the duct by the outflow of the end exit hole. It deflects the jets and abates the impingement cooling on the target wall in the downstream region but has no evidently effect on the heat transfer on the exit side wall. Higher impingement angle helps to augment the impingement cooling on the target wall and improves the resistance ability of the jets against the effect of the cross flow. The heat transfer enhancement ability on the target wall and exit side wall in the present duct is compared to that of a smooth duct. The Nusselt number of the former is about 3 times higher than that of the latter. It indicates that the impingement and swirl play equally important roles in the heat transfer enhancement in the present duct. Empirical dimensionless correlations based on the present experiment data are presented in the paper.


2016 ◽  
Vol 89 (3) ◽  
pp. 414-424 ◽  
Author(s):  
Adnan Sözen ◽  
H. İbrahim Variyenli ◽  
M. Bahadır Özdemir ◽  
Metin Gürü ◽  
İpek Aytaç

Volume 1 ◽  
2004 ◽  
Author(s):  
Tait Pottebaum ◽  
Mory Gharib

Experiments were conducted to determine the relationship between wake structure and heat transfer for an oscillating circular cylinder in cross-flow. An internally heated cylinder was suspended in a water tunnel and oscillated transverse to the freestream. The cylinder’s heat transfer coefficient was measured over a wide range of oscillation amplitudes and frequencies. By comparing these results to the known wake mode regions in the amplitude-frequency plane, relationships between wake mode and heat transfer were identified. Representative cases were investigated further by using digital particle image thermometry/velocimetry (DPIT/V) to simultaneously measure the temperature and velocity fields in the near-wake. This revealed more detail about the mechanisms of heat transfer enhancement. The dynamics of the vortex formation process, including the trajectories of the vortices during roll-up, are the primary cause of the heat transfer enhancement.


2004 ◽  
Vol 2004.14 (0) ◽  
pp. 331-334
Author(s):  
Kazuhiko SATO ◽  
Hiroshi KUROTANI ◽  
Himsar Ambarita ◽  
Jun SUZUKI ◽  
Norihiko KAMADA ◽  
...  

Author(s):  
Karsten Kusterer ◽  
Gang Lin ◽  
Dieter Bohn ◽  
Takao Sugimoto ◽  
Ryozo Tanaka ◽  
...  

Improvement of the gas turbine thermal efficiency can be achieved by reducing the cooling fluid amount in internal cooling channels with enhanced convective cooling. Nowadays the state of the art internal cooling technology for thermally high-loaded gas turbine blades consists of multiple serpentine-shaped cooling channels with angled ribs. Besides, huge effort is put on the development of more advanced internal cooling configurations with further internal heat transfer enhancements. Swirl chamber flow configurations, in which air is flowing through a pipe with a swirling motion generated by tangential jet inlet, have a potential for application as such advanced technology. This paper presents the validation of numerical results for a standard swirl chamber, which has been investigated experimentally in a reference publication. The numerical results obtained with application of the SST k-ω model show the best agreement with the experiment data in compare with other turbulence models. It has been found at the inlet region that the augmentation of the heat transfer is nearly seven times larger than the fully developed non-swirl flow. Within the further numerical study, another cooling configuration named Double Swirl Chambers (DSC) has been obtained and investigated. The numerical results are compared to the reference case. With the same boundary conditions and Reynolds number, the heat transfer coefficients are higher for the DSC configuration than for the reference configuration. In particular at the inlet region, the DSC configuration has even higher circumferentially averaged heat transfer enhancement in one section by approximately 41%. The globally-averaged heat transfer enhancement in DSC configuration is 34.5% higher than the value in the reference SC configuration. This paper presents the configuration of the DSC as an alternative internal cooling technology and explains its major physical phenomena, which are the reasons for the improvement of internal heat transfer.


Sign in / Sign up

Export Citation Format

Share Document