Heat transfer enhancement in microchannels with cross-flow synthetic jets

2010 ◽  
Vol 49 (3) ◽  
pp. 504-513 ◽  
Author(s):  
T.T. Chandratilleke ◽  
D. Jagannatha ◽  
R. Narayanaswamy
Author(s):  
Hai-yong Liu ◽  
Cun-liang Liu ◽  
Lin Ye

To evaluate the application of the impingement cooling in a trapezoidal duct, particularly the influence on internal cooling of the cross flow and swirl flow. Experimental and numerical studies have been performed. The experiment focuses on the heat transfer characteristics in the duct, when the numerical simulation focuses on the flow characteristics. Four Reynolds numbers (10000, 20000, 30000 and 40000), six cross flow mass flow ratios (0, 0.1, 0.2, 0.3, 0.4 and 0.5) and two impingement angle (35° and 45°) are considered in both the experiment and the numerical simulation. The temperature on the target wall and the exit side wall is measured by the thermocouples, when the realizable k-ε turbulence model and enhanced wall treatment are performed using a commercial code Fluent. The results show that only part of the jets contribute in the heat transfer enhancement on the target wall, the other jets improve a large anticlockwise vortex occupied the upper part of the duct and drive strong swirl flow. The heat transfer on the exit side wall is enhanced by the swirl flow. The cross flow is induced in the duct by the outflow of the end exit hole. It deflects the jets and abates the impingement cooling on the target wall in the downstream region but has no evidently effect on the heat transfer on the exit side wall. Higher impingement angle helps to augment the impingement cooling on the target wall and improves the resistance ability of the jets against the effect of the cross flow. The heat transfer enhancement ability on the target wall and exit side wall in the present duct is compared to that of a smooth duct. The Nusselt number of the former is about 3 times higher than that of the latter. It indicates that the impingement and swirl play equally important roles in the heat transfer enhancement in the present duct. Empirical dimensionless correlations based on the present experiment data are presented in the paper.


2016 ◽  
Vol 89 (3) ◽  
pp. 414-424 ◽  
Author(s):  
Adnan Sözen ◽  
H. İbrahim Variyenli ◽  
M. Bahadır Özdemir ◽  
Metin Gürü ◽  
İpek Aytaç

Volume 1 ◽  
2004 ◽  
Author(s):  
Tait Pottebaum ◽  
Mory Gharib

Experiments were conducted to determine the relationship between wake structure and heat transfer for an oscillating circular cylinder in cross-flow. An internally heated cylinder was suspended in a water tunnel and oscillated transverse to the freestream. The cylinder’s heat transfer coefficient was measured over a wide range of oscillation amplitudes and frequencies. By comparing these results to the known wake mode regions in the amplitude-frequency plane, relationships between wake mode and heat transfer were identified. Representative cases were investigated further by using digital particle image thermometry/velocimetry (DPIT/V) to simultaneously measure the temperature and velocity fields in the near-wake. This revealed more detail about the mechanisms of heat transfer enhancement. The dynamics of the vortex formation process, including the trajectories of the vortices during roll-up, are the primary cause of the heat transfer enhancement.


2004 ◽  
Vol 2004.14 (0) ◽  
pp. 331-334
Author(s):  
Kazuhiko SATO ◽  
Hiroshi KUROTANI ◽  
Himsar Ambarita ◽  
Jun SUZUKI ◽  
Norihiko KAMADA ◽  
...  

Author(s):  
Longzhong Huang ◽  
Terrence Simon ◽  
Min Zhang ◽  
Youmin Yu ◽  
Mark North ◽  
...  

A synthetic jet is an intermittent jet which issues through an orifice from a closed cavity over half of an oscillation cycle. Over the other half, the flow is drawn back through the same orifice into the cavity as a sink flow. The flow is driven by an oscillating diaphragm, which is one wall of the cavity. Synthetic jets are widely used for heat transfer enhancement since they are effective in disturbing and thinning thermal boundary layers on surfaces being cooled. They do so by creating an intermittently-impinging flow and by carrying to the hot surface turbulence generated by breakdown of the shear layer at the jet edge. The present study documents experimentally and computationally heat transfer performance of an array of synthetic jets used in a heat sink designed for cooling of electronics. This heat sink is comprised of a series of longitudinal fins which constitute walls of parallel channels. In the present design, the synthetic jet flow impinges on the tips of the fins. In the experiment, one channel of a 20-channel heat sink is tested. A second flow, perpendicular to the jet flow, passes through the channel, drawn by a vacuum system. Surface- and time-averaged heat transfer coefficients for the channel are measured, first with just the channel flow active then with the synthetic jets added. The purpose is to assess heat transfer enhancement realized by the synthetic jets. The multiple synthetic jets are driven by a single diaphragm which, in turn, is activated by a piezoelectrically-driven mechanism. The operating frequency of the jets is 1250 Hz with a cycle-maximum jet velocity of 50 m/s, as measured with a miniature hot-film anemometer probe. In the computational portion of the present paper, diaphragm movement is driven by a piston, simulating the experimental conditions. The flow is computed with a dynamic mesh using the commercial software package ANSYS FLUENT. Computed heat transfer coefficients show a good match with experimental values giving a maximum difference of less than 10%. The effects of amplitude and frequency of the diaphragm motion are documented. Changes in heat transfer due to interactions between the synthetic jet flow and the channel flow are documented in cases of differing channel flow velocities as well as differing jet operating conditions. Heat transfer enhancement obtained by activating the synthetic jets can be as large as 300% when the channel flow is of a low velocity compared to the synthetic jet peak velocity (as low as 4 m/s in the present study).


Sign in / Sign up

Export Citation Format

Share Document