Dynamic Performance Evaluation of a Redundantly Actuated and Over-constrained Parallel Manipulator

2018 ◽  
Vol 16 (3) ◽  
pp. 274-285 ◽  
Author(s):  
Hai-Qiang Zhang ◽  
Hai-Rong Fang ◽  
Bing-Shan Jiang ◽  
Shuai-Guo Wang
Author(s):  
Yongjie Zhao ◽  
Yanling Tian

Unlike the traditional Gough-Stewart platform with axial symmetrical structure, a parallel manipulator consists of non axial symmetrical structure has non axial symmetrical characteristic in the whole reachable workspace. This paper presents the joint capability evaluation of a parallel manipulator with non axial symmetrical characteristics. A series of velocity, torque and power indices are presented. The torque indices combining the acceleration, velocity, and gravity components of the dynamic model are used to evaluate the respective joint torque capability. The power indices corresponding to the torque indices are also adopted to evaluate the respective joint power capability. The joint capability evaluation of the parallel manipulator is carried out through computational analysis and simulation with the velocity, torque and power indices. It is shown that the respective actuating joint capabilities of the parallel manipulator are not uniform due to the non axial symmetrical structure. Thus the performance evaluation of this type of parallel manipulator must be performed by analyzing the respective joint capability. By means of these indices with obvious physical meanings, it is possible to control the respective joint capability of the parallel manipulator. The indices are general and can be used for the other types of parallel manipulators.


Robotica ◽  
2021 ◽  
pp. 1-15
Author(s):  
Xiaochu Liu ◽  
Yunfei Cai ◽  
Weitian Liu ◽  
Linlong Zhang ◽  
Chengxin Hu

Abstract In this paper, a special 6-PUS parallel manipulator (PM) is utilized as a shaking table. Unlike the existing results about 6-PUS PMs, we make the actuator direction collinear with the linkage direction at neutral position. With respect to the application background, a further analysis of the special PM is carried out from the perspective of motion/force transmissibility, natural frequency and acceleration capability. Specially, the complete dynamics model is established based on the Kane method. Then, generalized transmission indices based on the screw theory are utilized to reflect its motion ability, and a model of natural frequency is proposed with the axial stiffness of linkages considered. Finally, the effect of the angle between the actuator direction and the linkage direction α on various performances is analyzed, and other results are included to illustrate its feasibility and usability.


2009 ◽  
Vol 1 (3) ◽  
Author(s):  
Chunshi Feng ◽  
Shuang Cong ◽  
Weiwei Shang

In this paper, the kinematic calibration of a planar two-degree-of-freedom redundantly actuated parallel manipulator is studied without any assumption on parameters. A cost function based on closed-loop constraint equations is first formulated. Using plane geometry theory, we analyze the pose transformations that bring infinite solutions and present a kinematic calibration integrated of closed-loop and open-loop methods. In the integrated method, the closed-loop calibration solves all the solutions that fit the constraint equations, and the open-loop calibration guarantees the uniqueness of the solution. In the experiments, differential evolution is applied to compute the solution set, for its advantages in computing multi-optima. Experimental results show that all the parameters involved are calibrated with high accuracy.


2018 ◽  
Vol 66 (2) ◽  
pp. 377-422
Author(s):  
Chia-Hui Chen ◽  
Junichiro Ishida

2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
G. Boschetti ◽  
R. Rosa ◽  
A. Trevisani

Performance indexes usually provide global evaluations of robot performances mixing their translational and/or rotational capabilities. This paper proposes a definition of performance index, called direction-selective index (DSI), which has been specifically developed for parallel manipulators and can provide uncoupled evaluations of robot translational capabilities along relevant directions. The DSI formulation is first presented within a general framework, highlighting its relationship with traditional manipulability definitions, and then applied to a family of parallel manipulators (4-RUU) of industrial interest. The investigation is both numerical and experimental and allows highlighting the two chief advantages of the proposed DSIs over more conventional manipulability indexes: not only are DSIs more accurate in predicting the workspace regions where manipulators can best perform translational movements along specific directions, but also they allow foreseeing satisfactorily the dynamic performance variations within the workspace, though being purely kinematic indexes. The experiments have been carried out on an instrumented 4-RUU commercial robot.


Sign in / Sign up

Export Citation Format

Share Document