Dynamic Performance Evaluation of a Parallel Manipulator with Non Axial Symmetrical Characteristics by Computing the Respective Actuating Joint Capability

Author(s):  
Yongjie Zhao ◽  
Yanling Tian

Unlike the traditional Gough-Stewart platform with axial symmetrical structure, a parallel manipulator consists of non axial symmetrical structure has non axial symmetrical characteristic in the whole reachable workspace. This paper presents the joint capability evaluation of a parallel manipulator with non axial symmetrical characteristics. A series of velocity, torque and power indices are presented. The torque indices combining the acceleration, velocity, and gravity components of the dynamic model are used to evaluate the respective joint torque capability. The power indices corresponding to the torque indices are also adopted to evaluate the respective joint power capability. The joint capability evaluation of the parallel manipulator is carried out through computational analysis and simulation with the velocity, torque and power indices. It is shown that the respective actuating joint capabilities of the parallel manipulator are not uniform due to the non axial symmetrical structure. Thus the performance evaluation of this type of parallel manipulator must be performed by analyzing the respective joint capability. By means of these indices with obvious physical meanings, it is possible to control the respective joint capability of the parallel manipulator. The indices are general and can be used for the other types of parallel manipulators.

Robotica ◽  
2010 ◽  
Vol 29 (3) ◽  
pp. 483-493 ◽  
Author(s):  
Yongjie Zhao ◽  
Feng Gao

SUMMARYThe evaluation of joint velocity, torque, and power capability of the 8-PSS redundant parallel manipulator is investigated in this paper. A series of new joint capability indices with obvious physical meanings are presented. The torque index used to evaluate the respective joint dynamic capability of the redundant parallel manipulator is decoupled into the acceleration, velocity, and gravity term. With these velocity, torque, and power indices, it is possible to control the respective joint capability of the redundant parallel manipulator in different directions. The indices have been applied to evaluate the joint capability of the redundant parallel manipulator by simulation. They are general and can be used for other types of parallel manipulators.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
G. Boschetti ◽  
R. Rosa ◽  
A. Trevisani

Performance indexes usually provide global evaluations of robot performances mixing their translational and/or rotational capabilities. This paper proposes a definition of performance index, called direction-selective index (DSI), which has been specifically developed for parallel manipulators and can provide uncoupled evaluations of robot translational capabilities along relevant directions. The DSI formulation is first presented within a general framework, highlighting its relationship with traditional manipulability definitions, and then applied to a family of parallel manipulators (4-RUU) of industrial interest. The investigation is both numerical and experimental and allows highlighting the two chief advantages of the proposed DSIs over more conventional manipulability indexes: not only are DSIs more accurate in predicting the workspace regions where manipulators can best perform translational movements along specific directions, but also they allow foreseeing satisfactorily the dynamic performance variations within the workspace, though being purely kinematic indexes. The experiments have been carried out on an instrumented 4-RUU commercial robot.


Author(s):  
Yanwen Li ◽  
Yueyue Zhang ◽  
Lumin Wang ◽  
Zhen Huang

This paper investigates a novel 4-DOF 3-RRUR parallel manipulator, the number and the characteristics of its degrees of freedom are determined firstly, the rational input plan and the invert and forward kinematic solutions are carried out then. The corresponding numeral example of the forward kinematics is given. This type of parallel manipulators has a symmetrical structure, less accumulated error, and can be used to construct virtual-axis machine tools. The analysis in this paper will play an important role in promoting the application of such manipulators.


Author(s):  
Gianmarc Coppola ◽  
Dan Zhang ◽  
Kefu Liu ◽  
Zhen Gao

In this work the dynamic performance and control of a 2DOF parallel robot is conducted. The study is partly motivated by large variations in dynamic performance and control within the reachable workspace of many parallel manipulators. The forward dynamic model of the robot is derived in detail. The connection method is directly utilized for this derivation. Subsequently, a dynamic performance study is undertaken. This reveals important information whilst using a forward dynamic model. A performance index is proposed to determine the variability of performance of the parallel manipulator. Then a trajectory-tracking scenario is undertaken using a linear controller. By means of control, the simulations illustrate the validity of the proposed index for parallel manipulators.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Chao Wu ◽  
Xin-Jun Liu ◽  
Liping Wang ◽  
Jinsong Wang

The spherical 5R parallel manipulator is a typical parallel manipulator. It can be used as a pointing device or as a minimally invasive surgical robot. This study addresses the motion/force transmission analysis and optimization of the manipulator by taking into account the motion/force transmissibility. The kinematics of the manipulator is analyzed. Several transmission indices are defined by using screw theory for the performance evaluation and dimensional synthesis. The process of determining the optimal angular parameters based on performance charts is presented. The manipulator that has a large workspace and good motion/force transmissibility is identified.


2018 ◽  
Vol 16 (3) ◽  
pp. 274-285 ◽  
Author(s):  
Hai-Qiang Zhang ◽  
Hai-Rong Fang ◽  
Bing-Shan Jiang ◽  
Shuai-Guo Wang

Symmetry ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 908 ◽  
Author(s):  
Xiaoyong Wu

This work presents a comprehensive performance evaluation and optimum design of a novel symmetrical 4-PPR (P indicates the prismatic joint, R denotes the revolute joint, and the letter with underline represents an active joint) redundant planar parallel manipulator. The kinematic model is established, upon which the inverse position and singularity are analyzed. Based on the evaluation of dexterity, velocity, and stiffness performance, the optimum region is achieved. With the optical design parameters, a case study for the analysis of dynamic behavior is conducted. Performance comparison between the redundant manipulator and another two non-redundant 3-PPR planar parallel manipulators, one with a Δ-shape symmetrical structure and the other with U-shape symmetrical structure, is presented. Simulation results reveal that the U-shape manipulator has the greatest velocity performance. Moreover, the redundant manipulator possesses the best dexterity, stiffness, and dynamic performance.


2018 ◽  
Vol 10 (7) ◽  
pp. 168781401878706 ◽  
Author(s):  
Jiangping Mei ◽  
Xu Zhang ◽  
Jiawei Zang ◽  
Fan Zhang

The kinematic optimization of a type of parallel manipulator is addressed. Based on the kinematic analysis, the pressure angles within a limb and among the limbs are introduced, which have definite physical and geometrical meanings. In particular, a type of new pressure angle among the limbs (referred to as the second type of pressure angle among the limbs) is defined and considered to be one of the pressure angle constraints to ensure the kinematic performance. In the kinematic optimization phase, a global and comprehensive performance index, which combines the conditioning number of Jacobian matrix and pressure angles with the volume of workspace, is formulated as an objective function for minimization. One optimal kinematic design example that determines the dimensional parameters is provided to clarify the availability of the proposed approach. The analytical results indicate that good kinematic and dynamic performance can be guaranteed with the suggested design approach. Furthermore, the mutual effect between the dexterity and new pressure angle is analyzed. The effects of the pressure angle constraints on the minimum and maximum conditioning numbers and global dynamic performance indices through the entire workspace are discussed. The proposed research provides a method for the kinematic optimization design of parallel manipulators.


Sign in / Sign up

Export Citation Format

Share Document