scholarly journals Dynamic model of a 3-DOF redundantly actuated parallel manipulator

2016 ◽  
Vol 13 (5) ◽  
pp. 172988141666279
Author(s):  
Tiemin Li ◽  
Shi Jia ◽  
Jun Wu
Robotica ◽  
2009 ◽  
Vol 27 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Jun Wu ◽  
Jinsong Wang ◽  
Liping Wang ◽  
Tiemin Li

SUMMARYThis paper deals with the dynamic model and force control of the redundantly actuated parallel manipulator of a 5-DOF hybrid machine tool. The inverse dynamic model is derived by using the Newton–Euler method. The driving force is optimized by the least-square method. Based on the kinematic and dynamic models, the redundant chain is controlled by force mode and other chains by position mode. The redundantly actuated parallel manipulator is incorporated into a 5-DOF hybrid machine tool which also includes a worktable with a translational DOF and a rotational DOF. The experiments wherein the machine moves along a straight-line trajectory and a circular trajectory show that the machine has a good contouring performance.


2009 ◽  
Vol 1 (3) ◽  
Author(s):  
Chunshi Feng ◽  
Shuang Cong ◽  
Weiwei Shang

In this paper, the kinematic calibration of a planar two-degree-of-freedom redundantly actuated parallel manipulator is studied without any assumption on parameters. A cost function based on closed-loop constraint equations is first formulated. Using plane geometry theory, we analyze the pose transformations that bring infinite solutions and present a kinematic calibration integrated of closed-loop and open-loop methods. In the integrated method, the closed-loop calibration solves all the solutions that fit the constraint equations, and the open-loop calibration guarantees the uniqueness of the solution. In the experiments, differential evolution is applied to compute the solution set, for its advantages in computing multi-optima. Experimental results show that all the parameters involved are calibrated with high accuracy.


Author(s):  
Hamoon Hadian ◽  
Yasser Amooshahi ◽  
Abbas Fattah

This paper addresses the kinematics and dynamics modeling of a 4-DOF cable-driven parallel manipulator with new architecture and a typical Computed Torque Method (CTM) controller is developed for dynamic model in SimMechanics. The novelty of kinematic architecture and the closed loop formulation is presented. The workspace model of mechanism’s dynamic is obtained in an efficient and compact form by means of natural orthogonal complement (NOC) method which leads to the elimination of the nonworking kinematic-constraint wrenches and also to the derivation of the minimum number of equations. To verify the dynamic model and analyze the dynamical properties of novel 4-DOF cable-driven parallel manipulator, a typical CTM control scheme in joint-space is designed for dynamic model in SimMechanics.


Author(s):  
Yulei Hou ◽  
Guoxing Zhang ◽  
Daxing Zeng

Dynamic modeling serves as the fundamental basis for dynamic performance analysis and is an essential aspect of the control scheme design of parallel manipulators. This report presents a concise and efficient solution to the dynamics of Stewart parallel manipulators based on the screw theory. The initial pose of these manipulators is described. Then the pose matrix of each link of the Stewart parallel mechanism is obtained using an inverse kinematics solution and an exponential product formula. Considering the constraint relationship between joints, the constraint matrix of the Stewart parallel manipulator is deduced. In addition, the Jacobian matrix and the twist of each link are obtained. Moreover, by deriving the differential form of the constraint matrix, the spatial acceleration of each link is obtained. Based on the force balance relationship of each link, the inverse dynamics and the general form of the dynamic model of the Stewart parallel manipulator is established and the process of inverse dynamics is summarized. The dynamic model is then verified via dynamic simulation using the ADAMS software. A numerical example is considered to demonstrate the feasibility and effectiveness of this model. The proposed dynamic modeling approach serves as a fundamental basis for structural optimization and control scheme design of the Stewart parallel manipulators.


Sign in / Sign up

Export Citation Format

Share Document