scholarly journals Sparse classification with paired covariates

2019 ◽  
Vol 14 (3) ◽  
pp. 571-588
Author(s):  
Armin Rauschenberger ◽  
Iuliana Ciocănea-Teodorescu ◽  
Marianne A. Jonker ◽  
Renée X. Menezes ◽  
Mark A. van de Wiel

AbstractThis paper introduces the paired lasso: a generalisation of the lasso for paired covariate settings. Our aim is to predict a single response from two high-dimensional covariate sets. We assume a one-to-one correspondence between the covariate sets, with each covariate in one set forming a pair with a covariate in the other set. Paired covariates arise, for example, when two transformations of the same data are available. It is often unknown which of the two covariate sets leads to better predictions, or whether the two covariate sets complement each other. The paired lasso addresses this problem by weighting the covariates to improve the selection from the covariate sets and the covariate pairs. It thereby combines information from both covariate sets and accounts for the paired structure. We tested the paired lasso on more than 2000 classification problems with experimental genomics data, and found that for estimating sparse but predictive models, the paired lasso outperforms the standard and the adaptive lasso. The R package is available from cran.

2014 ◽  
Vol 13 ◽  
pp. CIN.S13075
Author(s):  
Askar Obulkasim ◽  
Mark A van de Wiel

This paper presents the R/Bioconductor package stepwiseCM, which classifies cancer samples using two heterogeneous data sets in an efficient way. The algorithm is able to capture the distinct classification power of two given data types without actually combining them. This package suits for classification problems where two different types of data sets on the same samples are available. One of these data types has measurements on all samples and the other one has measurements on some samples. One is easy to collect and/or relatively cheap (eg, clinical covariates) compared to the latter (high-dimensional data, eg, gene expression). One additional application for which stepwiseCM is proven to be useful as well is the combination of two high-dimensional data types, eg, DNA copy number and mRNA expression. The package includes functions to project the neighborhood information in one data space to the other to determine a potential group of samples that are likely to benefit most by measuring the second type of covariates. The two heterogeneous data spaces are connected by indirect mapping. The crucial difference between the stepwise classification strategy implemented in this package and the existing packages is that our approach aims to be cost-efficient by avoiding measuring additional covariates, which might be expensive or patient-unfriendly, for a potentially large subgroup of individuals. Moreover, in diagnosis for these individuals test, results would be quickly available, which may lead to reduced waiting times and hence lower the patients’ distress. The improvement described remedies the key limitations of existing packages, and facilitates the use of the stepwiseCM package in diverse applications.


2019 ◽  
Vol 36 (6) ◽  
pp. 1785-1794
Author(s):  
Jun Li ◽  
Qing Lu ◽  
Yalu Wen

Abstract Motivation The use of human genome discoveries and other established factors to build an accurate risk prediction model is an essential step toward precision medicine. While multi-layer high-dimensional omics data provide unprecedented data resources for prediction studies, their corresponding analytical methods are much less developed. Results We present a multi-kernel penalized linear mixed model with adaptive lasso (MKpLMM), a predictive modeling framework that extends the standard linear mixed models widely used in genomic risk prediction, for multi-omics data analysis. MKpLMM can capture not only the predictive effects from each layer of omics data but also their interactions via using multiple kernel functions. It adopts a data-driven approach to select predictive regions as well as predictive layers of omics data, and achieves robust selection performance. Through extensive simulation studies, the analyses of PET-imaging outcomes from the Alzheimer’s Disease Neuroimaging Initiative study, and the analyses of 64 drug responses, we demonstrate that MKpLMM consistently outperforms competing methods in phenotype prediction. Availability and implementation The R-package is available at https://github.com/YaluWen/OmicPred. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Hendrik van der Wurp ◽  
Andreas Groll

AbstractIn this work, we propose an extension of the versatile joint regression framework for bivariate count responses of the package by Marra and Radice (R package version 0.2-3, 2020) by incorporating an (adaptive) LASSO-type penalty. The underlying estimation algorithm is based on a quadratic approximation of the penalty. The method enables variable selection and the corresponding estimates guarantee shrinkage and sparsity. Hence, this approach is particularly useful in high-dimensional count response settings. The proposal’s empirical performance is investigated in a simulation study and an application on FIFA World Cup football data.


2000 ◽  
Vol 11 (3) ◽  
pp. 261-264 ◽  
Author(s):  
Tricia S. Clement ◽  
Thomas R. Zentall

We tested the hypothesis that pigeons could use a cognitively efficient coding strategy by training them on a conditional discrimination (delayed symbolic matching) in which one alternative was correct following the presentation of one sample (one-to-one), whereas the other alternative was correct following the presentation of any one of four other samples (many-to-one). When retention intervals of different durations were inserted between the offset of the sample and the onset of the choice stimuli, divergent retention functions were found. With increasing retention interval, matching accuracy on trials involving any of the many-to-one samples was increasingly better than matching accuracy on trials involving the one-to-one sample. Furthermore, following this test, pigeons treated a novel sample as if it had been one of the many-to-one samples. The data suggest that rather than learning each of the five sample-comparison associations independently, the pigeons developed a cognitively efficient single-code/default coding strategy.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
J A Ortiz ◽  
R Morales ◽  
B Lledo ◽  
E Garcia-Hernandez ◽  
A Cascales ◽  
...  

Abstract Study question Is it possible to predict the likelihood of an IVF embryo being aneuploid and/or mosaic using a machine learning algorithm? Summary answer There are paternal, maternal, embryonic and IVF-cycle factors that are associated with embryonic chromosomal status that can be used as predictors in machine learning models. What is known already The factors associated with embryonic aneuploidy have been extensively studied. Mostly maternal age and to a lesser extent male factor and ovarian stimulation have been related to the occurrence of chromosomal alterations in the embryo. On the other hand, the main factors that may increase the incidence of embryo mosaicism have not yet been established. The models obtained using classical statistical methods to predict embryonic aneuploidy and mosaicism are not of high reliability. As an alternative to traditional methods, different machine and deep learning algorithms are being used to generate predictive models in different areas of medicine, including human reproduction. Study design, size, duration The study design is observational and retrospective. A total of 4654 embryos from 1558 PGT-A cycles were included (January-2017 to December-2020). The trophoectoderm biopsies on D5, D6 or D7 blastocysts were analysed by NGS. Embryos with ≤25% aneuploid cells were considered euploid, between 25-50% were classified as mosaic and aneuploid with >50%. The variables of the PGT-A were recorded in a database from which predictive models of embryonic aneuploidy and mosaicism were developed. Participants/materials, setting, methods The main indications for PGT-A were advanced maternal age, abnormal sperm FISH and recurrent miscarriage or implantation failure. Embryo analysis were performed using Veriseq-NGS (Illumina). The software used to carry out all the analysis was R (RStudio). The library used to implement the different algorithms was caret. In the machine learning models, 22 predictor variables were introduced, which can be classified into 4 categories: maternal, paternal, embryonic and those specific to the IVF cycle. Main results and the role of chance The different couple, embryo and stimulation cycle variables were recorded in a database (22 predictor variables). Two different predictive models were performed, one for aneuploidy and the other for mosaicism. The predictor variable was of multi-class type since it included the segmental and whole chromosome alteration categories. The dataframe were first preprocessed and the different classes to be predicted were balanced. A 80% of the data were used for training the model and 20% were reserved for further testing. The classification algorithms applied include multinomial regression, neural networks, support vector machines, neighborhood-based methods, classification trees, gradient boosting, ensemble methods, Bayesian and discriminant analysis-based methods. The algorithms were optimized by minimizing the Log_Loss that measures accuracy but penalizing misclassifications. The best predictive models were achieved with the XG-Boost and random forest algorithms. The AUC of the predictive model for aneuploidy was 80.8% (Log_Loss 1.028) and for mosaicism 84.1% (Log_Loss: 0.929). The best predictor variables of the models were maternal age, embryo quality, day of biopsy and whether or not the couple had a history of pregnancies with chromosomopathies. The male factor only played a relevant role in the mosaicism model but not in the aneuploidy model. Limitations, reasons for caution Although the predictive models obtained can be very useful to know the probabilities of achieving euploid embryos in an IVF cycle, increasing the sample size and including additional variables could improve the models and thus increase their predictive capacity. Wider implications of the findings Machine learning can be a very useful tool in reproductive medicine since it can allow the determination of factors associated with embryonic aneuploidies and mosaicism in order to establish a predictive model for both. To identify couples at risk of embryo aneuploidy/mosaicism could benefit them of the use of PGT-A. Trial registration number Not Applicable


2009 ◽  
Vol 22 (1) ◽  
pp. 49-78 ◽  
Author(s):  
Francesco Giglio

Restitution for civil wrongs, also known as restitutionary damages, is a legal response through which the defendant’s wrongful gain is awarded to the claimant. James Edelman has recently advocated two different restitutionary responses for wrongs. One response, termed ‘restitutionary damages’, would aim to compel the wrongdoer to give back to the victim a wrongful gain, whereas the other response, ‘disgorgement damages’, would oblige the wrongdoer to give up a wrongful gain for the benefit of the claimant.In the first case, the claimant would obtain what should have never left his assets. In the second case, the claimant would be the beneficiary of a judicial decision according to which a wrongful gain should not be kept by the wrongdoer. In this essay, I seek to demonstrate that this taxonomy cannot be accepted. I argue that Edelman’s ‘disgorgement damages’ are the only true example of restitution for wrongs, whereas his ’restitutionary damages’ are simply compensatory damages which are quantified in a particular fashion. Edelman’s ‘restitutionary damages’ might appear to deprive the defendant of his gain, and thus to achieve a restitutionary goal. Yet they nullify the victim’s loss and therefore have a compensatory nature. They are ‘pseudo-restitutionary damages’. In opposition to the dual theory, I submit a model of restitutionary damages based upon a single response which is coherent with the tenets of corrective justice. Given that it deals mainly with Edelman’s ‘restitutionary damages’, this article is not so much about restitution for wrongs but rather about compensation, which is what Edelman’s ‘restitutionary damages’ really concerns. The theory which I propose, based upon a single restitutionary response for wrongs, solves the taxonomic incoherence of Edelman’s dual theory. It also reflects the law as we find it, being supportable by reference to the available judicial authorities.


2019 ◽  
Author(s):  
Wikum Dinalankara ◽  
Qian Ke ◽  
Donald Geman ◽  
Luigi Marchionni

AbstractGiven the ever-increasing amount of high-dimensional and complex omics data becoming available, it is increasingly important to discover simple but effective methods of analysis. Divergence analysis transforms each entry of a high-dimensional omics profile into a digitized (binary or ternary) code based on the deviation of the entry from a given baseline population. This is a novel framework that is significantly different from existing omics data analysis methods: it allows digitization of continuous omics data at the univariate or multivariate level, facilitates sample level analysis, and is applicable on many different omics platforms. The divergence package, available on the R platform through the Bioconductor repository collection, provides easy-to-use functions for carrying out this transformation. Here we demonstrate how to use the package with sample high throughput sequencing data from the Cancer Genome Atlas.


2014 ◽  
Author(s):  
Karl W Broman

Every data visualization can be improved with some level of interactivity. Interactive graphics hold particular promise for the exploration of high-dimensional data. R/qtlcharts is an R package to create interactive graphics for experiments to map quantitative trait loci (QTL; genetic loci that influence quantitative traits). R/qtlcharts serves as a companion to the R/qtl package, providing interactive versions of R/qtl's static graphs, as well as additional interactive graphs for the exploration of high-dimensional genotype and phenotype data.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249002
Author(s):  
Wikum Dinalankara ◽  
Qian Ke ◽  
Donald Geman ◽  
Luigi Marchionni

Given the ever-increasing amount of high-dimensional and complex omics data becoming available, it is increasingly important to discover simple but effective methods of analysis. Divergence analysis transforms each entry of a high-dimensional omics profile into a digitized (binary or ternary) code based on the deviation of the entry from a given baseline population. This is a novel framework that is significantly different from existing omics data analysis methods: it allows digitization of continuous omics data at the univariate or multivariate level, facilitates sample level analysis, and is applicable on many different omics platforms. The divergence package, available on the R platform through the Bioconductor repository collection, provides easy-to-use functions for carrying out this transformation. Here we demonstrate how to use the package with data from the Cancer Genome Atlas.


Sign in / Sign up

Export Citation Format

Share Document