scholarly journals Effect of increased serum 25(OH)D and calcium on structure and function of post-menopausal women: a pilot study

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
H. J. Hillstrom ◽  
R. Soeters ◽  
M. Miranda ◽  
S. I. Backus ◽  
J. Hafer ◽  
...  

Abstract Summary The purpose was to determine if increasing serum 25(OH)D and calcium in postmenopausal women increased skeletal muscle size, strength, balance, and functional task performance while decreasing muscle fatigue. PCSA of the vastus lateralis increased and ascent of stairs time decreased after 6 months of increased serum 25(OH)D. Purpose The Institute of Medicine recommends ≥ 20 ng/ml of serum 25-hydroxyvitamin D [25(OH)D] for bone and overall health. Serum 25(OH)D levels have been associated with physical performance, postural sway, and falls. The purpose of this study was to determine if increasing postmenopausal women’s serum 25(OH)D levels from 20–30 ng/ml to 40–50 ng/ml improved skeletal muscle size, strength, balance, and functional performance while decreasing skeletal muscle fatigue. Methods Twenty-six post-menopausal women (60–85 years old) with baseline serum 25(OH)D levels between 20 and 30 ng/ml were recruited. Oral over-the-counter (OTC) vitamin D3 and calcium citrate were prescribed to increase subjects’ serum 25(OH)D to levels between 40 and 50 ng/ml, serum calcium levels above 9.2 mg/dl, and PTH levels below 60 pg/ml, which were confirmed at 6 and 12 weeks. Outcome measures assessed at baseline and 6 months included muscle physiological cross-sectional area (PCSA), muscle strength, postural balance, time to perform functional tasks, and muscle fatigue. Repeated measures comparisons between baseline and follow-up were performed. Results Nineteen subjects completed the study. One individual could not afford the time commitment for the repeated measures. Three individuals did not take their vitamin D as recommended. Two subjects were lost to follow-up (lack of interest), and one did not achieve targeted serum 25(OH)D. Vastus lateralis PCSA increased (p = 0.007) and ascent of stair time decreased (p = 0.042) after 6 months of increasing serum 25(OH)D levels from 20–30 ng/ml to 40–50 ng/ml. Isometric strength was unchanged. Anterior-posterior center of pressure (COP) excursion and COP path length decreased (p < 0.1) albeit non-significantly, suggesting balance may improve from increased serum 25(OH)D and calcium citrate levels. Conclusions Several measures of muscle structure and function were sensitive to elevated serum 25(OH)D and calcium levels indicating that further investigation of this phenomenon in post-menopausal women is warranted.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
H. J. Hillstrom ◽  
R. Soeters ◽  
M. Miranda ◽  
S. I. Backus ◽  
J. Hafer ◽  
...  

A Correction to this paper has been published: 10.1007/s11657-020-00875-5


2020 ◽  
Vol 118 (3) ◽  
pp. 258a
Author(s):  
Laszlo Csernoch ◽  
Mónika Gönczi ◽  
Zsolt Ráduly ◽  
László Szabó ◽  
Nóra Dobrosi ◽  
...  

Cell Reports ◽  
2021 ◽  
Vol 34 (9) ◽  
pp. 108796
Author(s):  
Nathaniel D. Steinert ◽  
Gregory K. Potts ◽  
Gary M. Wilson ◽  
Amelia M. Klamen ◽  
Kuan-Hung Lin ◽  
...  

1979 ◽  
Vol 82 (2) ◽  
pp. 227-234 ◽  
Author(s):  
VIPA BOONNAMSIRI ◽  
J. C. KERMODE ◽  
B. D. THOMPSON

SUMMARY Radio-iodide was administered by prolonged continuous intravenous infusion to rats maintained under iodine-replete conditions and in moderate iodine deficiency. A close approximation to equilibrium labelling was thereby achieved. Labelled iodocompounds extracted from various tissues were analysed by thin-layer chromatography. Moderate iodine deficiency resulted in a slight increase in the ratio of mono-iodotyrosine to di-iodotyrosine in the thyroid. No change in the ratio of tri-iodothyronine (T3) to thyroxine (T4) was found in thyroid, plasma or skeletal muscle. Faecal excretion of T3 declined appreciably relative to that of T4. Under iodine-replete conditions the ratio of thyroidal secretion rates of T3 and T4 was estimated to be more than three times higher than the ratio of these iodocompounds within the thyroid. Heterogeneity of thyroglobulin structure and function may explain these observations.


Author(s):  
Margit V. Szabari ◽  
Jozsef Tolnai ◽  
Balazs Maar ◽  
Harikrishnan Parameswaran ◽  
Elizabeth Bartolak-Suki ◽  
...  

2006 ◽  
Vol 570 (3) ◽  
pp. 611-627 ◽  
Author(s):  
Giuseppe D'Antona ◽  
Francesca Lanfranconi ◽  
Maria Antonietta Pellegrino ◽  
Lorenza Brocca ◽  
Raffaella Adami ◽  
...  

1994 ◽  
Vol 14 (12) ◽  
pp. 8051-8057
Author(s):  
X Zhu ◽  
J E Yeadon ◽  
S J Burden

Although most skeletal muscle genes are expressed at similar levels in electrically active, innervated muscle and in electrically inactive, denervated muscle, a small number of genes, including those encoding the acetylcholine receptor, N-CAM, and myogenin, are expressed at significantly higher levels in denervated than in innervated muscle. The mechanisms that mediate electrical activity-dependent gene regulation are not understood, but these mechanisms are likely to be responsible, at least in part, for the changes in muscle structure and function that accompany a decrease in myofiber electrical activity. To understand how muscle activity regulates muscle structure and function, we used a subtractive-hybridization and cloning strategy to identify and isolate genes that are expressed preferentially in innervated or denervated muscle. One of the genes which we found to be regulated by electrical activity is the recently discovered acute myeloid leukemia 1 (AML1) gene. Disruption and translocation of the human AML1 gene are responsible for a form of acute myeloid leukemia. AML1 is a DNA-binding protein, but its normal function is not known and its expression and regulation in skeletal muscle were not previously appreciated. Because of its potential role as a transcriptional mediator of electrical activity, we characterized expression of the AML1 gene in innervated, denervated, and developing skeletal muscle. We show that AML1 is expressed at low levels in innervated skeletal muscle and at 50- to 100-fold-higher levels in denervated muscle. Four AML1 transcripts are expressed in denervated muscle, and the abundance of each transcript increases after denervation. We transfected C2 muscle cells with an expression vector encoding AML1, tagged with an epitope from hemagglutinin, and we show that AML1 is a nuclear protein in muscle. AML1 dimerizes with core-binding factor beta (CBF beta), and we show that CGF beta is expressed at high levels in both innervated and denervated skeletal muscle. PEBP2 alpha, which is structurally related to AML1 and which also dimerizes with CBF beta, is expressed at low levels in skeletal muscle and is up-regulated only weakly by denervation. These results are consistent with the idea that AML1 may have a role in regulating gene expression in skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document