Characterization of Microstructures across the Heat-Affected Zone of the Modified 9Cr-1Mo Weld Joint to Understand Its Role in Promoting Type IV Cracking

2007 ◽  
Vol 38 (1) ◽  
pp. 58-68 ◽  
Author(s):  
K. LAHA ◽  
K.S. CHANDRAVATHI ◽  
P. PARAMESWARAN ◽  
K. BHANU SANKARA RAO ◽  
S.L. MANNAN
2000 ◽  
Vol 123 (1) ◽  
pp. 105-111 ◽  
Author(s):  
Takashi Ogata ◽  
Masatsugu Yaguchi

Creep-fatigue tests on the heat-affected zone(HAZ) simulated materials, base metal, weld metal and weld joint of 2.25Cr-1Mo steel, and elastic-plastic and creep FEM analysis for the weld joint were conducted. It was found from the comparison between experimental evidences and the analytical results that “Type IV” cracking was caused by two major reasons. One is accumulation of creep strain during strain hold in the fine-grain region is larger than that in other regions, suggesting progress of creep damage in the fine-grain region prior to other regions. The other is existence of triaxial tensile stress field within the fine-grain region caused reduction of failure ductility. Crack initiation portion and failure life under the creep-fatigue test could be well predicted by the nonlinear damage accumulation model based on the FEM analysis results.


Author(s):  
W. Rekik ◽  
O. Ancelet ◽  
C. Gardin

In this paper, the mechanical behavior of the different metallurgical zones of the Electron Beam welded joint of thick Aluminum alloy 6061-T6 plates was identified by means of a single tensile test on round specimen oriented transversely to the fusion line. Commonly, the analysis of tensile tests allows a global characterization of the weld joint behavior. However, in this work, specific post processing of results was developed in order to determine in addition to standard findings, the local behavior on each position of the weld joint. The identified behavior laws are then simplified using the Hollomon analytical model. Hence, an evolution of the Hollomon parameters (n, K) along the weld joint is proposed. To validate the experimental methodology and the analytical approach, the experimental tensile test on crossed tensile specimen was numerically modeled. Experimental results and numerical simulations were in a good agreement which denotes of the reliability of the identified gradient model. In a second step, for more accurate characterization of the electron beam welded joint, an optimized geometry of tensile specimen was numerically dimensioned and tested. From these analyses, a relatively large heat affected zone with significant gradients of mechanical properties was highlighted. The fusion zone was qualified as the softest metallurgical zone but with a high strain hardening effect in contrary with the heat affected zone where the fracture occurs.


2018 ◽  
Vol 36 (3) ◽  
pp. 265-274
Author(s):  
T. Sakthivel ◽  
K. S. Chandravathi ◽  
K. Laha ◽  
M. D. Mathew

2011 ◽  
Vol 44 (1) ◽  
pp. 49
Author(s):  
M. Divya ◽  
C. R. Das ◽  
S. K. Albert ◽  
V. Ramasubbu ◽  
A. K. Bhaduri ◽  
...  
Keyword(s):  

2020 ◽  
Author(s):  
G. Britto Joseph ◽  
T. N. Valarmathi ◽  
A. John Rajan ◽  
K. Pawana Sudeer Kumar ◽  
S. Prasath

2021 ◽  
Vol 27 (S1) ◽  
pp. 280-282
Author(s):  
Juan Sanchez ◽  
Daniel Parrell ◽  
Alba Gonzalez-Rivera ◽  
Nicoleta Ploscariu ◽  
Katrina Forest ◽  
...  

Biochemistry ◽  
1983 ◽  
Vol 22 (21) ◽  
pp. 4940-4948 ◽  
Author(s):  
Robert S. MacWright ◽  
Virginia A. Benson ◽  
Katherine T. Lovello ◽  
Michel Van der Rest ◽  
Peter P. Fietzek

Sign in / Sign up

Export Citation Format

Share Document