scholarly journals Activation of rabbit liver high affinity cAMP (type IV) phosphodiesterase by a vanadyl-glutathione complex. Characterization of the role of the sulfhydryl.

1991 ◽  
Vol 266 (26) ◽  
pp. 17011-17019
Author(s):  
W.J. Thompson ◽  
B.H. Tan ◽  
S.J. Strada
Author(s):  
Stefan Gründer

Acid-sensing ion channels (ASICs) are proton-gated Na+ channels. Being almost ubiquitously present in neurons of the vertebrate nervous system, their precise function remained obscure for a long time. Various animal toxins that bind to ASICs with high affinity and specificity have been tremendously helpful in uncovering the role of ASICs. We now know that they contribute to synaptic transmission at excitatory synapses as well as to sensing metabolic acidosis and nociception. Moreover, detailed characterization of mouse models uncovered an unanticipated role of ASICs in disorders of the nervous system like stroke, multiple sclerosis, and pathological pain. This review provides an overview on the expression, structure, and pharmacology of ASICs plus a summary of what is known and what is still unknown about their physiological functions and their roles in diseases.


Endocrinology ◽  
1986 ◽  
Vol 118 (3) ◽  
pp. 990-998 ◽  
Author(s):  
VENKAT GOPALAKRISHNAN ◽  
CHRIS R. TRIGGLE ◽  
PRAKASH V. SULAKHE ◽  
J. ROBERT McNEILL

2004 ◽  
Vol 72 (9) ◽  
pp. 5143-5149 ◽  
Author(s):  
Andreas B. den Hartigh ◽  
Yao-Hui Sun ◽  
David Sondervan ◽  
Niki Heuvelmans ◽  
Marjolein O. Reinders ◽  
...  

ABSTRACT The Brucella abortus virB operon, encoding a type IV secretion system (T4SS), is required for intracellular replication and persistent infection in the mouse model. The products of the first two genes of the virB operon, virB1 and virB2, are predicted to be localized at the bacterial surface, where they could potentially interact with host cells. Studies to date have focused on characterization of transposon mutations in these genes, which are expected to exert polar effects on downstream genes in the operon. In order to determine whether VirB1 and VirB2 are required for the function of the T4SS apparatus, we constructed and characterized nonpolar deletion mutations of virB1 and virB2. Both mutants were shown to be nonpolar, as demonstrated by their ability to express the downstream gene virB5 during stationary phase of growth in vitro. Both VirB1 and VirB2 were essential for intracellular replication in J774 macrophages. The nonpolar virB2 mutant was unable to cause persistent infection in the mouse model, demonstrating the essential role of VirB2 in the function of the T4SS apparatus during infection. In contrast, the nonpolar virB1 mutant persisted at wild-type levels, showing that the function of VirB1 is dispensable in the mouse model of persistent infection.


1988 ◽  
Vol 65 (2) ◽  
pp. 594-600 ◽  
Author(s):  
T. B. Casale ◽  
P. Ecklund

To better define the role of muscarinic receptors in lung responses and airway diseases, we characterized the binding of the M1-specific antagonist, [3H]pirenzepine (PZ), and the nonspecific (M1- and M2-) antagonist, [3H]quinuclidinyl benzilate (QNB), to human peripheral lung tissue. Data obtained from 15 different lung specimens showed that the radioligands bound to single high-affinity sites with dissociation constant (Kd) values ranging from 1 to 9 nM for [3H]PZ and 0.03 to 0.46 nM for [3H]QNB. Comparison of total binding capacity values by equilibrium experiments with [3H]PZ, unlabeled PZ, and [3H]QNB indicates that approximately one-half of the total muscarinic binding sites in human peripheral lung binds PZ with high affinity (putative M1-subtypes). Kd values for muscarinic agents determined by competition experiments with [3H]PZ were consistent with the expected rank order of potency for interactions with muscarinic receptors. Characterization of the role of these muscarinic receptor subtypes in human lung responses may lead to the development of more selective therapeutic agents for the treatment of chronic obstructive airway diseases.


1984 ◽  
Vol 219 (1) ◽  
pp. 309-316 ◽  
Author(s):  
R J Owens ◽  
M J Crumpton

A 68 000-Mr protein is a major component of a Nonidet P-40-insoluble fraction of lymphocyte plasma membrane prepared from human B lymphoblastoid cells (BRI 8) and pig mesenteric lymph nodes. The association of the protein with the detergent-insoluble complex depends on free Ca2+ concentrations of greater than 10 microM. The human and pig 68 000-Mr proteins were purified and appear to be homologous on the basis of amino acid composition and peptide mapping. The protein is monomeric, has pI 5.8 and a single high-affinity Ca2+-binding site (KD 1.2 microM). The results are discussed in terms of the possible role of the 68 000-Mr protein as an intracellular Ca2+ receptor in lymphocytes.


Microbiology ◽  
2011 ◽  
Vol 157 (7) ◽  
pp. 1920-1928 ◽  
Author(s):  
Zhe Yang ◽  
Wei Hu ◽  
Kevin Chen ◽  
Jing Wang ◽  
Renate Lux ◽  
...  

Type IV pili (TFP) are membrane-anchored filaments with a number of important biological functions. In the model organism Myxococcus xanthus, TFP act as molecular engines that power social (S) motility through cycles of extension and retraction. TFP filaments consist of several thousand copies of a protein called PilA or pilin. PilA contains an N-terminal α-helix essential for TFP assembly and a C-terminal globular domain important for its activity. The role of the PilA sequence and its structure–function relationship in TFP-dependent S motility remain active areas of research. In this study, we identified an M. xanthus PilA mutant carrying an alanine to valine substitution at position 32 in the α-helix, which produced structurally intact but retraction-defective TFP. Characterization of this mutant and additional single-residue variants at this position in PilA demonstrated the critical role of alanine 32 in PilA stability, TFP assembly and retraction.


Author(s):  
L. T. Germinario

Understanding the role of metal cluster composition in determining catalytic selectivity and activity is of major interest in heterogeneous catalysis. The electron microscope is well established as a powerful tool for ultrastructural and compositional characterization of support and catalyst. Because the spatial resolution of x-ray microanalysis is defined by the smallest beam diameter into which the required number of electrons can be focused, the dedicated STEM with FEG is the instrument of choice. The main sources of errors in energy dispersive x-ray analysis (EDS) are: (1) beam-induced changes in specimen composition, (2) specimen drift, (3) instrumental factors which produce background radiation, and (4) basic statistical limitations which result in the detection of a finite number of x-ray photons. Digital beam techniques have been described for supported single-element metal clusters with spatial resolutions of about 10 nm. However, the detection of spurious characteristic x-rays away from catalyst particles produced images requiring several image processing steps.


1990 ◽  
Vol 63 (02) ◽  
pp. 193-203 ◽  
Author(s):  
John R Shainoff ◽  
Deborah J Stearns ◽  
Patricia M DiBello ◽  
Youko Hishikawa-Itoh

SummaryThe studies reported here probe the existence of a receptor-mediated mode of fibrin-binding by macrophages that is associated with the chemical change underlying the fibrinogen-fibrin conversion (the release of fibrinopeptides from the amino-terminal domain) without depending on fibrin-aggregation. The question is pursued by 1) characterization of binding in relation to fibrinopeptide content of both the intact protein and the CNBr-fragment comprising the amino-terminal domain known as the NDSK of the protein, 2) tests of competition for binding sites, and 3) photo-affinity labeling of macrophage surface proteins. The binding of intact monomers of types lacking either fibrinopeptide A alone (α-fibrin) or both fibrinopeptides A and B (αβ-fibrin) by peritoneal macrophages is characterized as proceeding through both a fibrin-specific low density/high affinity (BMAX ≃ 200–800 molecules/cell, KD ≃ 10−12 M) interaction that is not duplicated with fibrinogen, and a non-specific high density/low affinity (BMAX ≥ 105 molecules/cell, KD ≥ 10−6 M) interaction equivalent to the weak binding of fibrinogen. Similar binding characteristics are displayed by monocyte/macrophage cell lines (J774A.1 and U937) as well as peritoneal macrophages towards the NDSK preparations of these proteins, except for a slightly weaker (KD ≃ 10−10 M) high-affinity binding. The high affinity binding of intact monomer is inhibitable by fibrin-NDSK, but not fibrinogen-NDSK. This binding appears principally dependent on release of fibrinopeptide-A, because a species of fibrin (β-fibrin) lacking fibrinopeptide-B alone undergoes only weak binding similar to that of fibrinogen. Synthetic Gly-Pro-Arg and Gly-His-Arg-Pro corresponding to the N-termini of to the α- and the β-chains of fibrin both inhibit the high affinity binding of the fibrin-NDSKs, and the cell-adhesion peptide Arg-Gly-Asp does not. Photoaffinity-labeling experiments indicate that polypeptides with elec-trophoretically estimated masses of 124 and 187 kDa are the principal membrane components associated with specifically bound fibrin-NDSK. The binding could not be up-regulated with either phorbol myristyl acetate, interferon gamma or ADP, but was abolished by EDTA and by lipopolysaccharide. Because of the low BMAX, it is suggested that the high-affinity mode of binding characterized here would be too limited to function by itself in scavenging much fibrin, but may act cooperatively with other, less limited modes of fibrin binding.


Sign in / Sign up

Export Citation Format

Share Document