scholarly journals Cryo-ET Characterization of Novel Cellular Extrusions in Escherichia coli Induced by the Major Subunit Protein of Type IV Pili, PilA, from Pseudomonas aeruginosa

2021 ◽  
Vol 27 (S1) ◽  
pp. 280-282
Author(s):  
Juan Sanchez ◽  
Daniel Parrell ◽  
Alba Gonzalez-Rivera ◽  
Nicoleta Ploscariu ◽  
Katrina Forest ◽  
...  
Microbiology ◽  
2006 ◽  
Vol 152 (8) ◽  
pp. 2405-2420 ◽  
Author(s):  
Anu Daniel ◽  
Aparna Singh ◽  
Lynette J. Crowther ◽  
Paula J. Fernandes ◽  
Wiebke Schreiber ◽  
...  

Typical enteropathogenic Escherichia coli strains express an established virulence factor belonging to the type IV pili family, called the bundle-forming pilus (BFP). BFP are present on the cell surface as bundled filamentous appendages, and are assembled and retracted by proteins encoded by the bfp operon. These proteins assemble to form a molecular machine. The BFP machine may be conceptually divided into three components: the cytoplasmic membrane (CM) subassembly, which is composed of CM proteins and cytoplasmic nucleotide-binding proteins; the outer membrane (OM) subassembly and the pilus itself. The authors have previously characterized the CM subassembly and the pilus. In this study, a more complete characterization of the OM subassembly was carried out using a combination of biochemical, biophysical and genetic approaches. It is reported that targeting of BfpG to the OM was influenced by the secretin BfpB. BfpG and BfpU interacted with the amino terminus of BfpB. BfpU had a complex cellular distribution pattern and, along with BfpB and BfpG, was part of the OM subassembly.


2020 ◽  
Author(s):  
Anne D. Villela ◽  
Hanjeong Harvey ◽  
Katherine Graham ◽  
Lori L. Burrows

ABSTRACTTfpW is an oligosaccharyltransferase that modifies the subunits of type IV pili from group IV strains of Pseudomonas aeruginosa with oligomers of α-1,5-linked-D-arabinofuranose (D-Araf). Besides its oligosaccharyltransferase activity, TfpW may be responsible for periplasmic translocation and polymerization of D-Araf. Here we investigated these potential roles of TfpW in Pa5196 pilin glycosylation. Topology studies confirmed the periplasmic location of loop 1 and the large C-terminus domain, however the central portion of TfpW had an indeterminate configuration. Reconstitution of the Pa5196 pilin glycosylation system by providing pilA, tfpW +/- tfpX and the D-Araf biosynthesis genes PsPA7_6246-6249 showed that TfpW is sufficient for glycan polymerization and transfer to pilins in P. aeruginosa PAO1, while TfpX is also necessary in Escherichia coli. In addition to PsPA7_6246, DprE1 (PsPA7_6248) and DprE2 (PsPA7_6249), the GtrA-like component PsPA7_6247 was required for pilin glycosylation in E. coli versus PAO1. In a PAO1 ΔarnE/F mutant, loss of PsPA7_6247 expression decreased the level of pilin glycosylation, suggesting that arnE/F may play a role in pilin glycosylation when PsPA7_6247 is absent. Bacterial two-hybrid studies showed interactions of TfpW with itself, TfpX, PsPA7_6247 and DprE2, suggesting the formation of a complex that enables efficient pilin glycosylation. Fluorescence microscopy of E. coli and Pa5196ΔdprE1 expressing a DprE1-sGFP fusion showed that the protein is expressed in the cytoplasm, supporting our model that includes cytoplasmic biosynthesis of the lipid carrier-linked D-Araf precursor prior to its periplasmic translocation. Together these data suggest that TfpW may be the first example of a trifunctional flippase, glycosyltransferase, and oligosaccharyltransferase.


2021 ◽  
Vol 9 (1) ◽  
pp. 152
Author(s):  
Carly M. Davis ◽  
Jaclyn G. McCutcheon ◽  
Jonathan J. Dennis

Pseudomonas aeruginosa is a pernicious bacterial pathogen that is difficult to treat because of high levels of antibiotic resistance. A promising alternative treatment option for such bacteria is the application of bacteriophages; the correct combination of phages plus antibiotics can produce synergistic inhibitory effects. In this study, we describe morphological changes induced by sub-MIC levels of the antibiotic aztreonam lysine (AzLys) on P. aeruginosa PA01, which may in part explain the observed phage–antibiotic synergy (PAS). One-step growth curves for phage E79 showed increased adsorption rates, decreased infection latency, accelerated time to lysis and a minor reduction in burst size. Phage E79 plus AzLys PAS was also able to significantly reduce P. aeruginosa biofilm growth over 3-fold as compared to phage treatment alone. Sub-inhibitory AzLys-induced filamentation of P. aeruginosa cells resulted in loss of twitching motility and a reduction in swimming motility, likely due to a reduction in the number of polar Type IV pili and flagella, respectively, on the filamented cell surfaces. Phage phiKZ, which uses Type IV pili as a receptor, did not exhibit increased activity with AzLys at lower sub-inhibitory levels, but still produced phage–antibiotic synergistic killing with sub-inhibitory AzLys. A one-step growth curve indicates that phiKZ in the presence of AzLys also exhibits a decreased infection latency and moderately undergoes accelerated time to lysis. In contrast to prior PAS studies demonstrating that phages undergo delayed time to lysis with cell filamentation, these PAS results show that phages undergo accelerated time to lysis, which therefore suggests that PAS is dependent upon multiple factors, including the type of phages and antibiotics used, and the bacterial host being tested.


2003 ◽  
Vol 48 (6) ◽  
pp. 1511-1524 ◽  
Author(s):  
Mikkel Klausen ◽  
Arne Heydorn ◽  
Paula Ragas ◽  
Lotte Lambertsen ◽  
Anders Aaes-Jørgensen ◽  
...  

mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Pauline Basso ◽  
Michel Ragno ◽  
Sylvie Elsen ◽  
Emeline Reboud ◽  
Guillaume Golovkine ◽  
...  

ABSTRACT   Clinical strains of Pseudomonas aeruginosa lacking the type III secretion system genes employ a toxin, exolysin (ExlA), for host cell membrane disruption. Here, we demonstrated that ExlA export requires a predicted outer membrane protein, ExlB, showing that ExlA and ExlB define a new active two-partner secretion (TPS) system of P. aeruginosa . In addition to the TPS signals, ExlA harbors several distinct domains, which include one hemagglutinin domain, five arginine-glycine-aspartic acid (RGD) motifs, and a C-terminal region lacking any identifiable sequence motifs. However, this C-terminal region is important for the toxic activity, since its deletion abolishes host cell lysis. Using lipid vesicles and eukaryotic cells, including red blood cells, we demonstrated that ExlA has a pore-forming activity which precedes cell membrane disruption of nucleated cells. Finally, we developed a high-throughput cell-based live-dead assay and used it to screen a transposon mutant library of an ExlA-producing P. aeruginosa clinical strain for bacterial factors required for ExlA-mediated toxicity. The screen resulted in the identification of proteins involved in the formation of type IV pili as being required for ExlA to exert its cytotoxic activity by promoting close contact between bacteria and the host cell. These findings represent the first example of cooperation between a pore-forming toxin of the TPS family and surface appendages in host cell intoxication. IMPORTANCE The course and outcome of acute, toxigenic infections by Pseudomonas aeruginosa clinical isolates rely on the deployment of one of two virulence strategies: delivery of effectors by the well-known type III secretion system or the cytolytic activity of the recently identified two-partner secreted toxin, exolysin. Here, we characterize several features of the mammalian cell intoxication process mediated by exolysin. We found that exolysin requires the outer membrane protein ExlB for export into extracellular medium. Using in vitro recombinant protein and ex vivo assays, we demonstrated a pore-forming activity of exolysin. A cellular cytotoxicity screen of a transposon mutant library, made in an exolysin-producing clinical strain, identified type IV pili as bacterial appendages required for exolysin toxic function. This work deciphers molecular mechanisms underlying the activity of novel virulence factors used by P. aeruginosa clinical strains lacking the type III secretion system, including a requirement for the toxin-producing bacteria to be attached to the targeted cell to induce cytolysis, and defines new targets for developing antivirulence strategies.


2006 ◽  
Vol 188 (13) ◽  
pp. 4851-4860 ◽  
Author(s):  
Sophie de Bentzmann ◽  
Marianne Aurouze ◽  
Geneviève Ball ◽  
Alain Filloux

ABSTRACT Several subclasses of type IV pili have been described according to the characteristics of the structural prepilin subunit. Whereas molecular mechanisms of type IVa pilus assembly have been well documented for Pseudomonas aeruginosa and involve the PilD prepilin peptidase, no type IVb pili have been described in this microorganism. One subclass of type IVb prepilins has been identified as the Flp prepilin subfamily. Long and bundled Flp pili involved in tight adherence have been identified in Actinobacillus actinomycetemcomitans, for which assembly was due to a dedicated machinery encoded by the tad-rcp locus. A similar flp-tad-rcp locus containing flp, tad, and rcp gene homologues was identified in the P. aeruginosa genome. The function of these genes has been investigated, which revealed their involvement in the formation of extracellular Flp appendages. We also identified a gene (designated by open reading frame PA4295) outside the flp-tad-rcp locus, that we named fppA, encoding a novel prepilin peptidase. This is the second enzyme of this kind found in P. aeruginosa; however, it appears to be truncated and is similar to the C-terminal domain of the previously characterized PilD peptidase. In this study, we show that FppA is responsible for the maturation of the Flp prepilin and belongs to the aspartic acid protease family. We also demonstrate that FppA is required for the assembly of cell surface appendages that we called Flp pili. Finally, we observed an Flp-dependent bacterial aggregation process on the epithelial cell surface and an increased biofilm phenotype linked to Flp pilus assembly.


Sign in / Sign up

Export Citation Format

Share Document