Formation of the χ-Phase Precipitate in Co-28Cr-6Mo Alloys with Additional Si and C

2015 ◽  
Vol 46 (9) ◽  
pp. 4342-4350 ◽  
Author(s):  
Kei Sugawara ◽  
Alfirano ◽  
Shingo Mineta ◽  
Kyosuke Ueda ◽  
Takayuki Narushima
Keyword(s):  
2015 ◽  
Vol 30 (3) ◽  
pp. 591-595 ◽  
Author(s):  
Heping Liu ◽  
Hu’er Sun ◽  
Bin Liu ◽  
Dazhao Li ◽  
Fenger Sun ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Stefan Seidel ◽  
Rainer Pöttgen

Abstract The Re3B type, space group Cmcm, has boron-centered trigonal prisms as central building units and is one of the basic structure types with numerous binary and ternary representatives. The coloring of different atoms on the two crystallographically independent rhenium sites leads to a manifold of compounds with different bonding peculiarities that are rather isopointal than isotypic with the prototype. Typical compounds are the S-phase precipitate MgCuAl2, the silicide ScPt2Si or the iodide Th0.5Pb0.5I3 (PuBr3 type). Differences in size or composition might force symmetry reductions. This is discussed for YZn3 (space group Pnma) and the different coloring variants ScRhSi2 and TaNi2P which show different twists of the trigonal prisms. Striking singular representatives with lower symmetry structures are BaThBr6 (Pmma) and NbCo2B (P21/c) which allow different ordering/distortion patterns for the prisms. All these crystal chemical details are discussed on the basis of group subgroup schemes (Bärnighausen trees).


2013 ◽  
Vol 748 ◽  
pp. 123-127 ◽  
Author(s):  
Koichiro Fukui ◽  
Ayaka Mori ◽  
Masanori Mitome ◽  
Mahoto Takeda

The present work investigated precipitation behavior in an Al-17at%Mg alloy isothermally aged at 473K, by means of Vickers microhardness tests, DSC measurements and TEM observations. A quantitative analysis of DSC measurements revealed that the metastable β-phase precipitates mainly contribute to precipitation hardening of this alloy aged at 473K. The present STEM-EDX observations confirmed that the metastable β-phase precipitate has a layer structure with a composition similar to the stable phase (Al3Mg2).


2000 ◽  
Vol 33 (5) ◽  
pp. 1217-1222
Author(s):  
A. Biswas ◽  
Madangopal K. ◽  
J. B. Singh ◽  
S. K. Roy ◽  
S. Banerjee

The complete identity of a second-phase precipitate detected by transmission electron microscopy in combustion-synthesized NiAl was established. The crystal structure, including the point group, the space group and the lattice parameters, was determined by convergent and selected-area electron diffraction techniques. Energy dispersive X-ray spectroscopy was used for the determination of the chemical composition. Analysis established the phase to be the solid solution of NiO in Al2O3and presented evidence of the hitherto unreported room-temperature solubility.


1999 ◽  
Vol 589 ◽  
Author(s):  
R. Kilaas ◽  
V. Radmilovic ◽  
U. Dahmen

AbstractThe crystal structure of the Al2CuMg S-phase precipitate in an Al matrix has been determined by quantitative high resolution electron microscopy. This work combines techniques of image processing and quantitative comparison between experimental and simulated images with automatic refinement of imaging and structural parameters.


2011 ◽  
Vol 335-336 ◽  
pp. 805-808 ◽  
Author(s):  
Shi Xing Zhang ◽  
Hai Hong Wu ◽  
Gang Yi Cai

The mechanical properties of a 7A04 aluminum alloy were improved by deformation strengthening and phase transformations strengthening adopting thermomechanical treatment, whose process include solution treatment, deformation treatment and ageing treatment in turn. The paper focuses on the influences of deforming degree and ageing process on microstructure and properties of 7A04 aluminum alloy. The experimental results show that hardness increased with increasing deformation ratio, and the value are greatly higher than that of samples after solution treatment. The results of ageing after deformation show that the hardness enhanced with prolonging the ageing time, which reach the peak value at 16 hours. In addition, the microstructure became more homogeneous and the grain was refined obviously by metallography microscope observation. The second phase precipitate dispersedly to strengthen the alloy. Above all, in order to obtain the better mechanical properties, the optimal thermomechanical treatment processes are solution treatment at 470°C for 2h, deformation with ratio of 40% as well as ageing at 120°C for 16h.


2011 ◽  
Vol 239-242 ◽  
pp. 847-850
Author(s):  
Gang Yi Cai ◽  
Yu Yong Yang ◽  
Xiao Hua Li

The mechanical properties of Al-Zn-Mg aluminum alloy were improved by deformation strengthening and transformations strengthening adopting thermomechanical treatment, whose process are solution treatment, preageing treatment, deformation treatment and ageing treatment in turn. The paper focuses on the influences of deforming degree and ageing process on microstructure and properties of Al-Zn-Mg aluminum alloy. The experimental results show that hardness increased with increasing deformation ratio, and the value are greatly higher than that of samples after solution treatment. The results of ageing after deformation show that the hardness enhanced with prolonging the ageing time, which reach the peak value at 16 hours. In addition, the microstructure became more homogeneous and the grain was refined obviously by metallography microscope observation. The second phase precipitate dispersedly to strengthen the alloy. Above all, in order to obtain the better mechanical properties, the optimal thermomechanical treatment processes are solution treatment at 470°C for 2h, preageing treatment at 140°C for 24h, deformation with ratio of 40% as well as ageing at 120°C for 16h.


Sign in / Sign up

Export Citation Format

Share Document