Evolution of Texture, Strain, and Grain Boundary Constitution in Copper–Chromium Coatings and its Effect on Coating Corrosion Behavior

Author(s):  
S. Roohan Farooq Lala ◽  
Abhay Gupta ◽  
Chandan Srivastava
2020 ◽  
Vol 164 ◽  
pp. 110323
Author(s):  
X.L. An ◽  
C.L. Chu ◽  
L. Zhou ◽  
J. Ji ◽  
B.L. Shen ◽  
...  

2013 ◽  
Vol 690-693 ◽  
pp. 133-138
Author(s):  
Ya Bo Li ◽  
Fu Ming Wang ◽  
Xiao Nong Cheng

Intergranular corrosion behavior of 00Cr12 ferritic stainless steels with different amounts cerium was evaluated. For this evaluation, electrochemical measurements - polarization curves - were obtained for tested materials, and optical microscope was used to observe corrosive microstructure. Experimental results shows: cerium reduces grain sizes and improves intergranular corrosion resistance of test materials. Through mechanism analysis: cerium reduces grain sizes, increases grain boundary density, therefore might improve distribution aspects of carbides and nitrides, chromium depletion situation near grain boundary would be improved, this work worth further study.


2006 ◽  
Vol 45 ◽  
pp. 148-155 ◽  
Author(s):  
Jochen Schilm ◽  
Mathias Herrmann ◽  
G. Michael

The corrosion behavior of silicon nitride materials in aqueous media strongly depends on the composition and amount of the grain boundary. But there exist no systematic investigations of the relation between the corrosion behavior and the composition and amount of the grain-boundary phase. The subject of this study is based on the evaluation of the corrosion mechanisms of Si3N4 ceramics and YSiAlON glasses, both with defined and characterized compositions, in acidic and basic environments with different concentrations. Special effort has been made in describing the compositions of grain boundary phases in the sintered Si3N4 ceramics. A model to describe structural features of YSiAlON-glasses was developed which allows the correlation of the corrosion behavior of the ceramics and the glasses with their compositions. In combination with SEM and TEM investigations it became possible to give structural reasons for the different observed corrosion mechanisms.


2019 ◽  
Vol 28 (5) ◽  
pp. 2954-2966 ◽  
Author(s):  
Jianguo Tang ◽  
Yidan Zhang ◽  
Lingying Ye ◽  
Meng Qu ◽  
Jianshan Wu ◽  
...  

2019 ◽  
Vol 66 (6) ◽  
pp. 879-887 ◽  
Author(s):  
Yong Zhou ◽  
Pei Zhang ◽  
Jinping Xiong ◽  
Fuan Yan

Purpose A chromate conversion coating was prepared on the surface of bare AA2024 aluminum alloy by direct immersion in the chromating treatment bath, and the corrosion behavior of chromated AA2024 aluminum alloy in 3.5 per cent NaCl solution was studied by electrochemical measurement and microstructural observation. Design/methodology/approach According to the polarization curve test and the scanning electron microscope observation, the corrosion evolution of chromated AA2024 in 3.5 per cent NaCl solution was divided into the following three stages: coating failure, pitting corrosion and intergranular corrosion (IGC). Findings In the first stage, the chromate coating degraded gradually due to the combined action of chloride anions and water molecules, resulting in the complete exposure of AA2024 substrate to 3.5 per cent NaCl solution. Subsequently, in the second stage, chloride anions adsorbed at the sites of θ phase (Al2Cu) and S phase (Al2CuMg) on the AA2024 surface preferentially, and some corrosion pits initiated at the above two sites and propagated towards the deep of crystal grains. However, the propagation of a pit terminated when the pit front arrived at the adjacent grain boundary, where the initiation of IGC occurred. Originality/value Finally, in the third stage, the corrosion proceeded along the continuous grain boundary net and penetrated the internal of AA2024 substrate, resulting in the propagation of IGC. The related corrosion mechanisms for the bare and the chromated AA2024 were also discussed.


2009 ◽  
Vol 417-418 ◽  
pp. 29-32
Author(s):  
Qing Fen Li ◽  
Yu Dong Fu ◽  
Hai Dou Wang ◽  
Jun Wang

The microbiological influenced corrosion (MIC) behavior of the Cu-Ni alloy with or without Ni-P plating in the sterilized medium and sulfate-reducing bacteria (SRB) solution was investigated. Results show that severe pitting corrosion appeared on the uncoated specimens in both the sterilized medium and the SRB solution when the specimens coated with Ni-P plating were still in good condition. Since the Ni-P plating may offer both barrier and cathodic protection to the base metal. Besides, the structures of Ni-P plating and the passive film on the surface of the Ni-P plating are high uniform and amorphous without any structure defects. The non-crystalline structure may improve the corrosion resistance because it does not have crystalline defects such as dislocation, grain boundary, twin and so on which may cause corrosion easily. It is concluded that corrosion behavior of the Cu-Ni alloy with electroless Ni-P plating was improved greatly.


2007 ◽  
Vol 26-28 ◽  
pp. 259-262 ◽  
Author(s):  
Weon Ju Kim ◽  
Seok Min Kang ◽  
Ji Yeon Park

Silicon nitride (Si3N4) ceramics have been considered for various components of nuclear power plants such as mechanical seal of reactor coolant pump (RCP), guide roller for control rod drive mechanism (CRDM), and seal support, etc. Corrosion behavior of Si3N4 ceramics in high-temperature and high-pressure water must be elucidated before they can be considered for components of nuclear power plants. In this study, the corrosion behaviors of Si3N4 ceramics at hydrothermal condition (300°C, 9.0 MPa) were investigated in pure water. The grain-boundary phase was preferentially corroded and the corrosion reaction was controlled by the diffusion of the reactive species and/or products through the corroded layer. Results of this study imply that the variation of sintering aids and/or the control (e.g., crystallization) of the grain-boundary phase are necessary to increase the corrosion resistance of Si3N4 ceramics in high-temperature water.


Sign in / Sign up

Export Citation Format

Share Document