Control of interfacial reactions during liquid phase processing of aluminum matrix composites reinforced with INCONEL 601 fibers

1998 ◽  
Vol 29 (6) ◽  
pp. 1727-1739 ◽  
Author(s):  
F. Boland ◽  
C. Colin ◽  
F. Delannay
2012 ◽  
Vol 567 ◽  
pp. 15-20 ◽  
Author(s):  
Ling Cheng ◽  
De Gui Zhu ◽  
Ying Gao ◽  
Wei Li ◽  
Bo Wang

Alumina reinforced aluminum matrix composites (Al-5wt.%Si-Al2O3) fabricated by powder metallurgy through hot isotactic pressing were sintered in different processes, i.e. solid and liquid phase sintering. Optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscope (SEM), Energy Dispersive X-ray (EDX) techniques were used to characterize the sintered composites. The effects of solid phase and liquid phase sintering on density, microstructure, microhardness, compression and shear strength were investigated. It was found that in situ chemical reaction was completed in solid phase sintering, but the composites had lower microhardness, comprehension and shear strength due to low density and segregation of alumina and Si particles in microstructure. Segregation of reinforcement particles in solid phase sintering resulted from character of solid reaction and Si diffusion at high temperature over a long hold time.


2021 ◽  
Vol 63 (4) ◽  
pp. 350-355
Author(s):  
Mehmet Ayvaz ◽  
Hakan Cetinel

Abstract To be able to successfully produce ceramic-reinforced aluminum matrix composites by using the powder metallurgy method, the wetting of ceramic reinforcements should be increased. In addition, the negative effects of the oxide layer of the aluminum matrix on sinterability should be minimized. In order to break the oxide layer, the deoxidation property of Mg can be used. Furthermore, by creating a liquid phase, both wettability and sinterability can be improved. In this study, the effects of Mg and Cu alloy elements and sintering phase on the wettability, sinterability, and mechanical properties of Al/B4C composites were investigated. For this purpose, various amounts (5, 10, 20, and 30 wt.-%) of B4C reinforced Al5Cu and Al5Mg matrix composites were produced by the powder metallurgy method. After pressing under 400 MPa pressure, composite samples were sintered for 4 hours. The sintering was carried out in two different groups as solid phase sintering at 560 °C and liquid phase sintering at 610 °C. Despite the deoxidation effect of Mg in Al5Mg matrix composites, higher mechanical properties were determined in Al5Cu composites which were sintered in liquid phase because wettability increased. The highest mechanical properties were obtained in the 20 wt.-% B4C reinforced Al5Cu sample sintered in liquid phase.


2005 ◽  
Vol 297-300 ◽  
pp. 2790-2794
Author(s):  
Ji Tai Niu ◽  
Wei Guo ◽  
Jin Fan Zhai ◽  
Mu Zhen Wang

In this paper, a new method for welding aluminum matrix composites is mainly described. It is liquid-phase-impact (LPI) diffusion welding, which has gained China National Patent. The results show that by liquid-phase-impact diffusion welding, when the certain amount of liquid phase alloy appears, with effect of certain impact speed, the interface of matrix-reinforcement and reinforcement-reinforcement are joined perfectly. Because the welding time is very short, the harmful phase is avoided in welded area and bad effect on the interface between the aluminum matrix and reinforcement hasn’t caused, and the work efficiency has improved enormously. With the technique, particle reinforcement aluminum matrix composite SiCp/ZL101 has welded successfully, and joint strength is about 75% of the strength of composite (as-casted), deformation less than 3%.


Carbon ◽  
2016 ◽  
Vol 96 ◽  
pp. 919-928 ◽  
Author(s):  
Weiwei Zhou ◽  
Sora Bang ◽  
Hiroki Kurita ◽  
Takamichi Miyazaki ◽  
Yuchi Fan ◽  
...  

1997 ◽  
Vol 12 (9) ◽  
pp. 2332-2336 ◽  
Author(s):  
Mamoru Mabuchi ◽  
Hajime Iwasaki ◽  
Ha-Guk Jeong ◽  
Kenji Hiraga ◽  
Kenji Higashi

A liquid phase serves to relax stress concentrations caused by sliding at interfaces and grain boundaries in high-strain-rate superplasticity for aluminum matrix composites. However, the presence of a liquid phase does not always lead to high-strain-rate superplasticity because too much liquid causes decohesion at a liquid phase. The critical conditions of the optimum distribution, thickness, and volume in a liquid phase are discussed based on the observation results by differential scanning calorimetry and transmission electron microscopy. As a result, a very thin and discontinuous liquid phase is required both to assist relaxation of the stress concentrations and to limit decohesion at a liquid phase.


Sign in / Sign up

Export Citation Format

Share Document