scholarly journals Real-Time, Model-Based Spray-Cooling Control System for Steel Continuous Casting

2010 ◽  
Vol 42 (1) ◽  
pp. 87-103 ◽  
Author(s):  
Bryan Petrus ◽  
Kai Zheng ◽  
X. Zhou ◽  
Brian G. Thomas ◽  
Joseph Bentsman
2016 ◽  
Vol 229 ◽  
pp. 651-658 ◽  
Author(s):  
Jian Zhang ◽  
Deng-Fu Chen ◽  
Cheng-Qian Zhang ◽  
Shui-Gen Wang ◽  
Weng-Sing Hwang

Author(s):  
V. Panov

This paper describes the development of a distributed network system for real-time model based control of industrial gas turbine engines. Distributed control systems contribute toward improvements in performance, testability, control system maintainability and overall life-cycle cost. The goal of this programme was to offer a modular platform for improved model based control system. Hence, another important aspect of this programme was real-time implementation of non-linear aero-thermal gas turbine models on a dedicated hardware platform. Two typical applications of real-time engine models, namely hardware-in-the-loop simulations and on-line co-simulations, have been considered in this programme. Hardware-in-the-loop platform has been proposed as a transitional architecture, which should lead towards a fully distributed on-line model based control system. Distributed control system architecture offers the possibility of integrating a real-time on-line engine model embedded within a dedicated hardware platform. Real-time executing models use engine operating conditions to generate expected values for measured and non-measured engine parameters. These virtual measurements can be used for the development of model based control methods, which can contribute towards improvements in engine stability, performance and life management. As an illustration of model based control concept, the example of gas turbine transient over-temperature protection is presented in this study.


Sign in / Sign up

Export Citation Format

Share Document