Pb Recovery of Waste Cathode Ray Tube Funnel Glass by PbO Vapor Vacuum Reduction (PVVR) Process and the Feasibility of Luminescent Glass Production

Author(s):  
Fengkang Wang ◽  
Baoqiang Xu ◽  
Bin Yang ◽  
Zhijun Wang ◽  
Jian Wu ◽  
...  
Author(s):  
Carolyn Swan

Around the year 970 CE, a merchant ship carrying an assortment of goods from East Africa, Persia, India, Sri Lanka, Southeast Asia, and China foundered and sank to the bottom of the Java Sea. Thousands of beads made from many different materials—ceramic, jet, coral, banded stone, lapis lazuli, rock crystal, sapphire, ruby, garnet, pearl, gold, and glass—attest to the long-distance movement and trade of these small and often precious objects throughout the Indian Ocean world. The beads made of glass are of particular interest, as closely-dated examples are very rare and there is some debate as to where glass beads were being made and traded during this period of time. This paper examines 18 glass beads from the Cirebon shipwreck that are now in the collection of Qatar Museums, using a comparative typological and chemical perspective within the context of the 10th-century glass production. Although it remains uncertain where some of the beads were made, the composition of the glass beads points to two major production origins for the glass itself: West Asia and South Asia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
John S. McCloy ◽  
José Marcial ◽  
Jack S. Clarke ◽  
Mostafa Ahmadzadeh ◽  
John A. Wolff ◽  
...  

AbstractEuropean Bronze and Iron Age vitrified hillforts have been known since the 1700s, but archaeological interpretations regarding their function and use are still debated. We carried out a series of experiments to constrain conditions that led to the vitrification of the inner wall rocks in the hillfort at Broborg, Sweden. Potential source rocks were collected locally and heat treated in the laboratory, varying maximum temperature, cooling rate, and starting particle size. Crystalline and amorphous phases were quantified using X-ray diffraction both in situ, during heating and cooling, and ex situ, after heating and quenching. Textures, phases, and glass compositions obtained were compared with those for rock samples from the vitrified part of the wall, as well as with equilibrium crystallization calculations. ‘Dark glass’ and its associated minerals formed from amphibolite or dolerite rocks melted at 1000–1200 °C under reducing atmosphere then slow cooled. ‘Clear glass’ formed from non-equilibrium partial melting of feldspar in granitoid rocks. This study aids archaeological forensic investigation of vitrified hillforts and interpretation of source rock material by mapping mineralogical changes and glass production under various heating conditions.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1546
Author(s):  
Árpád Imre-Lucaci ◽  
Melinda Fogarasi ◽  
Florica Imre-Lucaci ◽  
Szabolcs Fogarasi

This paper presents a novel approach for the recovery of lead from waste cathode-ray tube (CRT) glass by applying a combined chemical-electrochemical process which allows the simultaneous recovery of Pb from waste CRT glass and electrochemical regeneration of the leaching agent. The optimal operating conditions were identified based on the influence of leaching agent concentration, recirculation flow rate and current density on the main technical performance indicators. The experimental results demonstrate that the process is the most efficient at 0.6 M acetic acid concentration, flow rate of 45 mL/min and current density of 4 mA/cm2. The mass balance data corresponding to the recycling of 10 kg/h waste CRT glass in the identified optimal operating conditions was used for the environmental assessment of the process. The General Effect Indices (GEIs), obtained through the Biwer Heinzle method for the input and output streams of the process, indicate that the developed recovery process not only achieve a complete recovery of lead but it is eco-friendly as well.


1967 ◽  
Vol 5 (4) ◽  
pp. 153-155
Author(s):  
J. G. Shepherd
Keyword(s):  

1948 ◽  
Vol 25 (2) ◽  
pp. 455-466 ◽  
Author(s):  
S. B. Williams ◽  
N. R. Bartlett ◽  
E. King
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document