An indigenous technology? A commentary on Lankton et al. "Early primary glass production in southern Nigeria"

2006 ◽  
Vol 4 (1) ◽  
pp. 139-141 ◽  
Author(s):  
Ian C. Freestone
2006 ◽  
Vol 4 (1) ◽  
pp. 111-138 ◽  
Author(s):  
James W. Lankton ◽  
O. Akin Ige ◽  
Thilo Rehren

Author(s):  
Carolyn Swan

Around the year 970 CE, a merchant ship carrying an assortment of goods from East Africa, Persia, India, Sri Lanka, Southeast Asia, and China foundered and sank to the bottom of the Java Sea. Thousands of beads made from many different materials—ceramic, jet, coral, banded stone, lapis lazuli, rock crystal, sapphire, ruby, garnet, pearl, gold, and glass—attest to the long-distance movement and trade of these small and often precious objects throughout the Indian Ocean world. The beads made of glass are of particular interest, as closely-dated examples are very rare and there is some debate as to where glass beads were being made and traded during this period of time. This paper examines 18 glass beads from the Cirebon shipwreck that are now in the collection of Qatar Museums, using a comparative typological and chemical perspective within the context of the 10th-century glass production. Although it remains uncertain where some of the beads were made, the composition of the glass beads points to two major production origins for the glass itself: West Asia and South Asia.


2010 ◽  
Vol 36 (3) ◽  
pp. 502-508
Author(s):  
Wei HUANG ◽  
Li ZHOU ◽  
Jing-Xia LIU ◽  
Zhi LI ◽  
Jian-Fang GUI
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
John S. McCloy ◽  
José Marcial ◽  
Jack S. Clarke ◽  
Mostafa Ahmadzadeh ◽  
John A. Wolff ◽  
...  

AbstractEuropean Bronze and Iron Age vitrified hillforts have been known since the 1700s, but archaeological interpretations regarding their function and use are still debated. We carried out a series of experiments to constrain conditions that led to the vitrification of the inner wall rocks in the hillfort at Broborg, Sweden. Potential source rocks were collected locally and heat treated in the laboratory, varying maximum temperature, cooling rate, and starting particle size. Crystalline and amorphous phases were quantified using X-ray diffraction both in situ, during heating and cooling, and ex situ, after heating and quenching. Textures, phases, and glass compositions obtained were compared with those for rock samples from the vitrified part of the wall, as well as with equilibrium crystallization calculations. ‘Dark glass’ and its associated minerals formed from amphibolite or dolerite rocks melted at 1000–1200 °C under reducing atmosphere then slow cooled. ‘Clear glass’ formed from non-equilibrium partial melting of feldspar in granitoid rocks. This study aids archaeological forensic investigation of vitrified hillforts and interpretation of source rock material by mapping mineralogical changes and glass production under various heating conditions.


Sign in / Sign up

Export Citation Format

Share Document