Metalorganic chemical vapor deposition growth and characterization of InGaP/GaAs superlattices

2006 ◽  
Vol 35 (4) ◽  
pp. 705-710 ◽  
Author(s):  
X. B. Zhang ◽  
J. H. Ryou ◽  
R. D. Dupuis ◽  
G. Walter ◽  
N. Holonyak
1987 ◽  
Vol 102 ◽  
Author(s):  
P.-Y. Lu ◽  
L. M. Williams ◽  
C.-H. Wang ◽  
S. N. G. Chu ◽  
M. H. Ross

ABSTRACTTwo low temperature metalorganic chemical vapor deposition growth techniques, the pre-cracking method and the plasma enhanced method, will be discussed. The pre-cracking technique enables one to grow high quality epitaxial Hg1−xCdxTe on CdTe or CdZnTe substrates at temperatures around 200–250°C. HgTe-CdTe superlattices with sharp interfaces have also been fabricated. Furthermore, for the first time, we have demonstrated that ternary Hg1−xCdTe compounds and HgTe-CdTe superlattices can be successfully grown by the plasma enhanced process at temperatures as low as 135 to 150°C. Material properties such as surface morphology, infrared transmission, Hall mobility, and interface sharpness will be presented.


2004 ◽  
Vol 43 (5A) ◽  
pp. 2667-2671 ◽  
Author(s):  
Kyoung-Won Kim ◽  
Nam-Soo Kim ◽  
Hyung-Gyoo Lee ◽  
Yeong-Seuk Kim ◽  
Hee-Jae Kang ◽  
...  

1993 ◽  
Vol 300 ◽  
Author(s):  
M. S. Feng ◽  
Y. M. Hsin ◽  
C. H. Wu

ABSTRACTA pseudomorphic Ga0.1In0.9P/InP MESFET grown by low pressure metalorganic chemical vapor deposition(LP-MOCVD) has been fabricated and characterized. The results indicated a transconductance of 66.7 ms/mm and a saturation drain current (Idss) of 55.6 mA have been achieved; furthermore, the Schottky barrier on InGaP as high as 0.67eV can be obtained using Pt2Si as the gate material. For comparison, a conventional InP MESFET with 5μm gate length has also been fabricated on InP epitaxial layer grown by low pressure metalorganic chemical vapor deposition on Fe-doped semi-insulating InP substrate. The transconductance and Idss were found to be 46.7 mS/mm and 43.1 mA at zero gate, respectively, for the depletion mode n-channel MESFET with Au as the gate metal; whereas, for the MESFET using Pt2Si as the gate metal, a transconductance of 40.3 mS/mm and a saturation drain current of 41.1 mA at zero gate bias have been obtained. The results indicated that Ga0.1In0.9P/lnP MESFET has better performance than InP MESFET because of higher energy gap of Ga0.1In0.9P.


Sign in / Sign up

Export Citation Format

Share Document