Design and Numerical Simulation of a Symbiotic Thermoelectric Power Generation System Fed by a Low-Grade Heat Source

2013 ◽  
Vol 43 (6) ◽  
pp. 1940-1945 ◽  
Author(s):  
Amir Yadollah Faraji ◽  
Randeep Singh ◽  
Masataka Mochizuki ◽  
Aliakbar Akbarzadeh
Author(s):  
Weera Punin ◽  
Somchai Maneewan ◽  
Chantana Punlek

In the current work, a thermoelectric power generation system was designed for an assessment of opportunities in terms of electricity production through the utilization of waste heat from sugarcane industries. In this study, the thermoelectric cooling of TEC1-12708T200 was appropriate for use in electric power generation from low-grade heat sources. The experiments used ten thermoelectric modules and an aluminum water block installed on the exterior surface area of a sugar boiler to achieve the same water flow as a traditional system. The results revealed that the power generation system could generate about 30 W (25.7 V, 1.17 A) at a matched load of approximately 36.8 Ω. The thermoelectric power generation system could convert 12.5% of heat energy into electrical energy. Therefore, the thermoelectric power generation system designed in this study could be an effective alternative for waste heat recovery in sugarcane industries.


Author(s):  
Kazuaki Yazawa ◽  
Ali Shakouri

An analytic model for optimizing thermoelectric power generation system is developed and utilized for parametric studies. This model takes into account the external thermal resistances with hot and cold reservoirs. In addition, the spreading thermal resistance in the module substrates is considered to find the impact of designing small fraction of thermo elements per unit area. Previous studies are expanded by a full optimization of the electrical and thermal circuits. The optimum condition satisfies both electrical load resistance match with the internal resistance and the thermal resistance match with the heat source and the heat sink. Thermoelectric element aspect ratio and fill factor are found to be key parameters to optimize. The optimum leg length and the maximum output power are determined by a simple formula. The output power density per mass of the thermoelectric material has a peak when thermo elements cover a fractional area of ∼1%. The role of the substrate heat spreading for thermoelectric power generation is equally significant as thermoelement. For a given heat source, the co-optimization of the heat sink and the thermoelectric module should be performed. Active cooling and the design of the heat sink are customized to find the energy payback for the power generation system. The model includes both the air cooled heat sinks and the water cooled micro channels. We find that one can reduce the mass of thermoelement to around 3∼10% of that in commercial modules for the same output power, as long as the module and elements are designed properly. Also one notes that higher heat flux sources have significantly larger energy payback and reduced cost per output power.


2011 ◽  
Vol 40 (5) ◽  
pp. 778-783 ◽  
Author(s):  
Sun-Kook Kim ◽  
Byeong-Cheol Won ◽  
Seok-Ho Rhi ◽  
Shi-Ho Kim ◽  
Jeong-Ho Yoo ◽  
...  

2013 ◽  
Vol 283 ◽  
pp. 87-97 ◽  
Author(s):  
Bimrew Tamrat Admasu ◽  
Xiao Bing Luo ◽  
Jia Wei Yao ◽  
Ting Zhen Ming

Abstract. Besides the material property and dimensional optimization of the thermoelectric module, temperature distribution uniformity on the hot junction of the module surface highly affects the outputs of the thermoelectric power generation system. This paper reports the findings on the effects of non-uniform input temperature distribution on the performance of thermoelectric power generation system. To assure the investigation, heat transfer model and finite element formulation of thermoelectric module having non-linear material property have been developed. In addition to the experimental data from a real thermoelectric device, thermoelectric power generation system modeling and simulation using finite element packaging ANSYS software was carried out. For the simulation, temperature dependent thermoelectric material properties such as the Seebeck coefficient, thermal and electrical conductivity have been considered. The experimental and simulation results indicate that keeping the temperature distribution uniform on the hot junction of the thermoelectric module results higher efficiency, higher power, voltage and current outputs than the non-uniform temperature distribution.


Sign in / Sign up

Export Citation Format

Share Document