Electrical and Microstructural Reliability of Pressureless Silver-Sintered Joints on Silicon Carbide Power Modules Under Thermal Cycling and High-Temperature Storage

2021 ◽  
Vol 50 (3) ◽  
pp. 914-925
Author(s):  
Won Sik Hong ◽  
Mi Song Kim ◽  
Kyoung-Kook Hong
2012 ◽  
Vol 2012 (DPC) ◽  
pp. 001253-001283
Author(s):  
Satoshi Okude ◽  
Kazushisa Itoi ◽  
Masahiro Okamoto ◽  
Nobuki Ueta ◽  
Osamu Nakao

We have developed active and passive devices embedded multilayer board utilizing our laminate-based WLCSP embedding technology. The proposed embedded board is realized by laminating plural circuit formed polyimide films together by adhesive with thin devices being arranged in between those polyimide layers. The electrical connection via has a filled via structure composed of the alloy forming conductive paste which ensures high reliable connection. The embedded active device is WLCSP which has no solder bump on its pads therefore the thickness of the die is reduced to 80 microns. The embedded passive device is a chip resistor or capacitor whose thickness is 150 microns with copper electrodes. The electrical connection between components and board's circuits are made by same conductive paste vias. The thin film based structure and low profile devices yields the 260 microns thickness board which is the thinnest embedded of its kind in the world. To confirm the reliability of the embedded board, we have performed several reliability tests on the WLCSP and resistors embedded TEG board of 4 polyimide/5 copper circuit layers. As environmental tests, we performed a moisture reflow test compliant to JEDEC MSL2 followed by a thermal cycling test (−55 deg.C to 125 deg.C, 1000cycles) and a high temperature storage test (150 deg.C). All tested samples passed the moisture reflow test and showed no significant change of circuit resistance after the thermal cycling/high temperature storage tests. Moreover, mechanical durability of the board was also confirmed by bending the devices embedded portion. The embedded device was never broken and the circuit resistance change was also within acceptable range. The proposed embedded board will open up a new field of device packaging. Alan/Rey ok move from Flip Chip and Wafer Level Packaging 1-3-12.


2017 ◽  
Vol 76-77 ◽  
pp. 444-449 ◽  
Author(s):  
Wissam Sabbah ◽  
Faical Arabi ◽  
Oriol Avino-Salvado ◽  
Cyril Buttay ◽  
Loïc Théolier ◽  
...  

2012 ◽  
Vol 52 (9-10) ◽  
pp. 1966-1970 ◽  
Author(s):  
R. Pelzer ◽  
M. Nelhiebel ◽  
R. Zink ◽  
S. Wöhlert ◽  
A. Lassnig ◽  
...  

2014 ◽  
Vol 895 ◽  
pp. 567-570
Author(s):  
Azman Jalar ◽  
Wan Yusmawati Wan Yusoff ◽  
Norinsan Kamil Othman ◽  
Irman Abdul Rahman

Effect of gamma radiation (1.33 MeV) and high temperature storage of semiconductor package towards micromechanical properties has been investigated. The in-house fabricated Quad Flat No Lead was exposed to gamma radiation with the dose of 5 Gy. Afterwards, high temperature storage was performed at 150 °C for 10, 100 and 1000 hours. Subsequently, the three point bending technique was carried out to obtain the micromechanical properties of semiconductor package. The fracture of the packages caused by three point bending test was subjected to 3D CT scan to capture the image of the fracture. Irradiated package shows the decreasing in their strength with increasing doses of gamma radiation. However, the strength of the package was improved after high temperature storage for 10 hours and decreased as the storage period is extended. Further analysis exhibited that high temperature storage for 10 hours is reveal as good thermal treatment for package in radioactive environment application.


Sign in / Sign up

Export Citation Format

Share Document