A Low-Cost and High-Efficiency Electrothermal Composite Film Composed of Hybrid Conductivity Fillers and Polymer Blends Matrix for High-Performance Plate Heater

Author(s):  
Yang Xia ◽  
Peng Cai ◽  
Yaning Liu ◽  
Jing Zhu ◽  
Rui Guo ◽  
...  
2019 ◽  
Vol 7 (36) ◽  
pp. 20494-20518 ◽  
Author(s):  
Bo Li ◽  
Lin Fu ◽  
Shuang Li ◽  
Hui Li ◽  
Lu Pan ◽  
...  

High-efficiency and low-cost perovskite solar cells (PSCs) are desirable candidates for addressing the scalability challenge of renewable solar energy.


2019 ◽  
Vol 13 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Saeed Ahmed ◽  
Muhammad Naeem Ashiq ◽  
Dianqing Li ◽  
Pinggui Tang ◽  
Fabrice Leroux ◽  
...  

Background: High concentration of phosphate has been threatening human health and the ecosystem. Adsorption is one of high-efficiency and low-cost techniques to reduce the concentration of phosphate. This mini review aims to summarize the recent development of adsorption materials for phosphate removal. Method: We conducted a detailed search of “adsorption of phosphate” in the published papers and the public patents on the adsorbents for phosphate based on Web of Science database in the period from January 1 2012 to December 31 2017. The corresponding literature was carefully evaluated and analyzed. Results: One hundred and forty one papers and twenty two recent patents were included in this review. An increased trend in scientific contributions was observed in the development of adsorption materials for phosphate removal. Three kinds of promising adsorbents: layered double hydroxides, natural materials, and metal oxides were paid special attention including removal mechanism, performance as well as the relationship between adsorption performance and structure. Both the chemical composition and the morphology play a key role in the removal capacity and rate. Conclusion: The findings of this review confirm the importance of phosphate removal, show the development trend of high-performance and low-cost adsorption materials for phosphate removal, and provide a helpful guide to design and fabricate high-efficiency adsorbents.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Chouki Balakishan ◽  
N. Sandeep ◽  
M. V. Aware

In many photovoltaic (PV) energy conversion systems, nonisolated DC-DC converters with high voltage gain are desired. The PV exhibits a nonlinear power characteristic which greatly depends on the environmental conditions. Hence in order to draw maximum available power various algorithms are used with PV voltage/current or both as an input for the maximum power point tracking (MPPT) controller. In this paper, golden section search (GSS) based MPPT control and its application with three-level DC-DC boost converter for MPPT are demonstrated. The three-level boost converter provides the high voltage transfer which enables the high power PV system to work with low size inductors with high efficiency. The balancing of the voltage across the two capacitors of the converter and MPPT is achieved using a simple duty cycle based voltage controller. Detailed simulation of three-level DC-DC converter topology with GSS algorithm is carried out in MATLAB/SIMULINK platform. The validation of the proposed system is done by the experiments carried out on hardware prototype of 100 W converter with low cost AT’mega328 controller as a core controller. From the results, the proposed system suits as one of the solutions for PV based generation system and the experimental results show high performance, such as a conversion efficiency of 94%.


2014 ◽  
Vol 651-653 ◽  
pp. 1019-1023
Author(s):  
You Huan Wang ◽  
Ning Liu ◽  
Dong Wei Xia

In order to address and meet the needs of people in these regions without electricity, we designed a small 500W off-grid PV-inverter. The main circuit includes battery charge and discharge circuit, and two-stage converter topology isolated. The digital processor TMS320F28023, high-performance and low-cost, is used to achieve maximum power point tracking (MPPT) of PV modules and charge control for battery. The experimental results of the prototype show that this design with high-precision and high-efficiency, meets the design requirements.


2015 ◽  
Vol 4 (4) ◽  
Author(s):  
Baohua Jia

AbstractLight management plays an important role in high-performance solar cells. Nanostructures that could effectively trap light offer great potential in improving the conversion efficiency of solar cells with much reduced material usage. Developing low-cost and large-scale nanostructures integratable with solar cells, thus, promises new solutions for high efficiency and low-cost solar energy harvesting. In this paper, we review the exciting progress in this field, in particular, in the market, dominating silicon solar cells and pointing out challenges and future trends.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Tsung-Wei Chang ◽  
Chao-Te Liu ◽  
Wen-Hsi Lee ◽  
Yu-Jen Hsiao

In this study, commercially available white paint is used as a pigmented dielectric reflector (PDR) in the fabrication of a low-cost back electrode stack with an Al-doped ZnO (AZO) layer for thin-film silicon solar cell applications. An initial AZO film was deposited by the radio-frequency magnetron sputtering method. In order to obtain the highest transmittance and lowest resistivity of AZO film, process parameters such as sputtering power and substrate temperature were investigated. The optimal 100-nm-thick AZO film with low resistivity and high transmittance in the visible region are 6.4 × 10−3 Ω·cm and above 80%, respectively. Using glue-like white paint doped withTiO2 nanoparticles as the PDR enhances the external quantum efficiency (EQE) of a microcrystalline silicon absorptive layer owing to the doped white particles improving Fabry–Pérot interference (FPI), which raises reflectance and scattering ability. To realize the cost down requirement, decreasing the noble metal film thickness such as a 30-nm-thick silver reflector film, and a small doping particle diameter (D50 = 135 nm) and a high solid content (20%) lead to FPI improvement and a great EQE, which is attributed to improved scattering and reflectivity because of optimum diameter (Dopt) and thicker PDR film. The results indicate that white paint can be used as a reflector coating in low-cost back-electrode structures in high-performance electronics.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3475 ◽  
Author(s):  
Shijie Zhang ◽  
Zhenguo Gao ◽  
Di Lan ◽  
Qian Jia ◽  
Ning Liu ◽  
...  

Nitrated-pyrazole-based energetic compounds have attracted wide publicity in the field of energetic materials (EMs) due to their high heat of formation, high density, tailored thermal stability, and detonation performance. Many nitrated-pyrazole-based energetic compounds have been developed to meet the increasing demands of high power, low sensitivity, and eco-friendly environment, and they have good applications in explosives, propellants, and pyrotechnics. Continuous and growing efforts have been committed to promote the rapid development of nitrated-pyrazole-based EMs in the last decade, especially through large amounts of Chinese research. Some of the ultimate aims of nitrated-pyrazole-based materials are to develop potential candidates of castable explosives, explore novel insensitive high energy materials, search for low cost synthesis strategies, high efficiency, and green environmental protection, and further widen the applications of EMs. This review article aims to present the recent processes in the synthesis and physical and explosive performances of the nitrated-pyrazole-based Ems, including monopyrazoles with nitro, bispyrazoles with nitro, nitropyrazolo[4,3-c]pyrazoles, and their derivatives, and to comb the development trend of these compounds. This review intends to prompt fresh concepts for designing prominent high-performance nitropyrazole-based EMs.


2006 ◽  
Vol 18 (03) ◽  
pp. 128-137 ◽  
Author(s):  
BOR-SHING LIN ◽  
BOR-SHYH LIN ◽  
HUEY-DONG WU ◽  
FOK-CHING CHONG ◽  
SAO-JIE CHEN

This paper describes the design of a low-cost and high performance wheeze recognition system. First, respiratory sounds are captured, amplified and filtered by an analog circuit; then digitized through a PC soundcard, and recorded in accordance with the Computerized Respiratory Sound Analysis (CORSA) standards. Since the proposed wheeze detection algorithm is based on the spectrogram processing of respiratory sounds, spectrograms generated from recorded sounds have to pass through a 2D bilateral filter for edge-preserving smoothing. Finally, the processed spectra go through an edge detection procedure to recognize wheeze sounds.Experiment results show a high sensitivity of 0.967 and a specificity of 0.909 in qualitative analysis of wheeze recognition. Due to its high efficiency, great performance and easy-to-implement features, this wheeze recognition system could be of interest in the clinical monitoring of asthma patients and the study of physiological mechanisms in the respiratory airways.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 278 ◽  
Author(s):  
Bhavani S ◽  
Shanmugan. S ◽  
Selvaraju P

In this work has been made to predict the effect of several parameters on the productivity to a system by expending fuzzy set technique. A solar cooker has been developed low cost and critically high efficiency produce in Vel Tech Multitech Engineering College at Chennai, Tamilnadu, India. Dissects in thermal performance of cooking system have been produced heat transfer follow in fuzzy logic techniques (Low, Medium, and High). The thermal effect of factor should be developed in fuzzy logic for the system. They should have groups of heat transfer produced in fuzzy logic controller for solar cooker system which had been implemented of system performance discussed. It is to study have induced to give the shortly time for the enhancement of the box solar cooker production.  


2019 ◽  
Vol 1 (1) ◽  
pp. 76-85 ◽  
Author(s):  
Hyeong Pil Kim ◽  
Abd. Rashid bin Mohd Yusoff ◽  
Jin Jang

Perovskite solar cells have attracted significant attention due to their high efficiency and low cost.


Sign in / Sign up

Export Citation Format

Share Document