High Temperature Sliding Wear of Spray-Formed Solid-Lubricated Aluminum Matrix Composites

2013 ◽  
Vol 22 (10) ◽  
pp. 3101-3110 ◽  
Author(s):  
Kamalpreet Kaur ◽  
O. P. Pandey
2014 ◽  
Vol 21 (1) ◽  
pp. 29-38
Author(s):  
Oscar Marcelo Suárez ◽  
Natalia Cortes-Urrego ◽  
Sujeily Soto-Medina ◽  
Deborah Marty-Flores

AbstractAn aluminum-copper matrix composite reinforced with aluminum diboride particles was studied at high temperature via thermomechanometry experiments. The matrix contained 2 wt% Cu, whereas the amount of boron forming AlB2 ranged from 0 to 4 wt%, i.e., 0 to 8.31 vol% of diboride particles. In the first segment of the research, we demonstrated that larger amounts of AlB2 particles raised the composite hardness even at 300°C. To assess the material creep behavior, another set of specimens were tested under 1 N compression at 400°C and 500°C for 12 h. Higher levels of AlB2 allowed the composites to withstand compression creep deformations at those temperatures. By using existing creep models developed for metal matrix composites we were able to determine that viscous slip deformation was the dominant deformation mechanism for the temperatures and stress levels used in our experiments. Additionally, the computed creep activation energy for these aluminum matrix composites were found comparable to the energies reported for other similar materials, for instance, Al/SiCp composites.


2017 ◽  
Vol 62 (2) ◽  
pp. 1235-1242 ◽  
Author(s):  
A. Lekatou ◽  
N. Gkikas ◽  
A.E. Karantzalis ◽  
G. Kaptay ◽  
Z. Gacsi ◽  
...  

AbstractAluminum matrix composites were prepared by adding submicron sized WC particles into a melt of Al 1050 under mechanical stirring, with the scope to determine: (a) the most appropriate salt flux amongst KBF4, K2TiF6, K3AlF6and Na3AlF6for optimum particle wetting and distribution and (b) the maximum carbide volume fraction (CVF) for optimum response to sliding wear. The nature of the wetting agent notably affected particle incorporation, with K2TiF6providing the greatest particle insertion. A uniform aluminide (in-situ) and WC (ex-situ) particle distribution was attained. Two different sliding wear mechanisms were identified for low CVFs (≤1.5%), and high CVFs (2.0%), depending on the extent of particle agglomeration.


2020 ◽  
Vol 54 (1) ◽  
pp. 41-48
Author(s):  
K. Zheng ◽  
X. Du ◽  
H. Qi ◽  
T. Zhao ◽  
F. Liu ◽  
...  

1992 ◽  
Vol 23 (10) ◽  
pp. 2833-2847 ◽  
Author(s):  
Manish Roy ◽  
B. Venkataraman ◽  
V. V. Bhanuprasad ◽  
Y. R. Mahajan ◽  
G. Sundararajan

2017 ◽  
Vol 52 (1) ◽  
pp. 123-134 ◽  
Author(s):  
Mohammad Senemar ◽  
Behzad Niroumand ◽  
Ali Maleki ◽  
Pradeep K Rohatgi

In this study, in situ aluminum matrix composites were synthesized through pyrolysis of high temperature vulcanization silicone in commercially pure aluminum melt. For this purpose, 1 to 4 wt% of high temperature vulcanization silicone was added to a vortex of molten aluminum at 750℃ and the resulting slurries were cast in steel dies. Microstructure, hardness, and tensile properties of the as-cast samples were examined at ambient and high temperatures. The results revealed the in situ formation and distribution of reinforcement particles in the matrix. Energy-dispersive X-ray analysis indicated that the formed reinforcement particles consisted of O and Si elements. This confirms the in situ reinforcement formation by pyrolysis of high temperature vulcanization silicone in the melt. The size of the in situ formed particles was mostly in the range of 200–2000 nm. It was shown that the composites synthesized by the addition of 4 wt% high temperature vulcanization had the highest mechanical properties both at ambient and high temperatures. Room temperature hardness, tensile strength, and yield strength of this sample were increased by about 50%, 23%, and 19% compared to the monolithic sample, respectively.


Author(s):  
Hartaj Singh ◽  
Kapil Singh ◽  
Sachit Vardhan ◽  
Sanjay Mohan ◽  
Gagandeep Singh

Sign in / Sign up

Export Citation Format

Share Document