wear response
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 37)

H-INDEX

23
(FIVE YEARS 3)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7671
Author(s):  
Yuliia Chabak ◽  
Bohdan Efremenko ◽  
Ivan Petryshynets ◽  
Vasily Efremenko ◽  
Angeliki G. Lekatou ◽  
...  

The structural features and nanoindentation/tribological properties of 316 stainless steel fabricated by conventional rolling and laser-based powder bed fusion (LPBF) were comparatively investigated regarding the effect of surface-pulsed plasma treatment (PPT). PPT was performed using an electrothermal axial plasma accelerator under a discharge voltage of 4.5 kV and a pulse duration of 1 ms. Optical microscopy, scanning electron microscopy, X-ray diffraction, nanoindentation measurements and tribological tests were applied to characterize the alloys. The LPBF steel presented almost the same modulus of elasticity and double the hardness of rolled steel. However, the LPBF steel manifested lower dry-sliding wear resistance compared with its wrought counterpart due to its porous structure and non-metallic inclusions. Conversely, LPBF steel showed three times higher wear resistance under sliding in simulated body fluid (SBF), as compared with wrought steel. PPT led to steel modification through surface melting to a depth of 22–26 μm, which resulted in a fine cellular structure. PPT moderately improved the dry-sliding wear resistance of LPBF steel by fusion of pores on its surface. On the other hand, PPT had almost no effect on the SBF-sliding wear response of the steel. The modification features were analyzed using a computer simulation of plasma-induced heating.


2021 ◽  
Author(s):  
Ashish Soni ◽  
Pankaj Kumar Das

Abstract The diverse nature of polymer with attractive properties is replacing the conventional materials with polymeric composites. The present study is sought to evaluate the wear performance of thermoplastic based composites under the conditions of different loads and sliding speeds. A series of nine different composite materials was developed by using low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polyethylene terephthalate (PET) with replacements of sand i.e. 0, 30, 40, and 50 wt.%. The abrasive wear was evaluated by following the ASTM G65 standard test for abrasive wear through dry-sand rubber wheel apparatus under the applied loads of 34.335, 56.898, 68.719, 79.461 and 90.742 (N), and sliding speeds of 0.05388, 0.7184, 0.8980, 1.0776 and 1.4369 (m/s). The results showed the wear response varies non-linearly with load and sliding speed. The possible correlations between wear and mechanical properties, and throughout discussions for wear behaviors with morphological study of the worn surfaces were provided.


Wear ◽  
2021 ◽  
pp. 204144
Author(s):  
Alixe Dreano ◽  
Soha Baydoun ◽  
Siegfried Fouvry ◽  
Sibel Nar ◽  
Paco Alvarez

Author(s):  
Radhika N. ◽  
M. Sam

Dry sliding performance of Cu-11Ni-4Si/10wt.%Al2O3 graded composite was investigated statistically and experimentally using pin-on-disc wear tester. Microstructural analysis revealed maximum gradient concentration of ceramics towards the inner radial wall of developed composite. The wear analysis was based on Taguchi’s L27 orthogonal array and Regression models, at tribo-parameters (load-15, 25, 35 N, slide velocity-1.5, 2.5, 3.5 m/s and slide distance-750, 1500, 1250 m). Wear raised with proportional rise in load and distance. Trend analysis of influential factors against wear response was studied using Analysis of Variance. The influence of process conditions and their interactions on the wear are also detailed. Worn surface analysis identified the formation of Mechanically Mixed Layers at intermediate velocity. This had a major influence over the improvement of wear resistance. This developed composite is suggestable for diverse automobile components of various tribology applications.


Author(s):  
Raj Kumar Singh ◽  
Amit Telang ◽  
Satyabrata Das

Abstract The effects of friction heat and friction coefficient on the abrasive wear response of Al-7.5Si–SiCp composite against low-cost hypereutectic (Al-17.5Si) alloy were investigated as functions of the abrasive size and applied load in both as-cast and after heat-treatment conditions. Experiments were performed on pin-on-disc apparatus at 38 –80 μm abrasive size, 5 – 20 N applied load, 100 –400 m abrading (sliding) distances and 1 m s–1 constant sliding speed. The frictional heating of as-cast and heat-treated composite was superior compared to the matrix alloy and hypereutectic alloy, whereas the trend reversed for the friction coefficient. The frictional heating and friction coefficient of the materials increased with the abrasive size and applied load in both as-cast and after heat-treatment. The worn surface and wear debris particles were examined by using field emission scanning electron microscopy to understand the wear mechanism.


Lubricants ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 30
Author(s):  
Timo J. Hakala ◽  
Kenneth Holmberg ◽  
Anssi Laukkanen

Diamond-like carbon (DLC) coatings have proven to be an excellent thin film solution for reducing friction of tribological systems as well as providing resistance to wear. These characteristics yield greater efficiency and longer lifetimes of tribological contacts with respect to surface solutions targeting for example automotive applications. However, the route from discovery to deployment of DLC films has taken its time and still the design of these solutions is largely done on a trial-and-error basis. This results in challenges both in designing and optimizing DLC films for specific applications and limits the understanding, and subsequently exploitation, of many of the underlying physical mechanisms responsible for its favorable frictional response and high resistance to various types of wear. In current work multiscale modeling is utilized to study the friction and wear response of DLC thin films in dry and lubricated contacts. Atomic scale mechanisms responsible for friction due to interactions between the sliding surfaces and shearing of the amorphous carbon surface are utilized to establish frictional response for microstructure scale modeling of DLC to DLC surface contacts under dry and graphene lubricated conditions. Then at the coarser microstructural scale both structure of the multilayer, substrate and surface topography of the DLC coating are incorporated in studying of the behavior of the tribosystem. A fracture model is included to evaluate the nucleation and growth of wear damage leading either to loss of adhesion or failure of one of the film constituents. The results demonstrate the dependency of atomistic scale friction on film characteristics, particularly hybridization of bonding and tribochemistry. The microstructure scale modeling signifies the behavior of the film as a tribosystem, the various material properties and the surface topography interact to produce the explicitly modeled failure response. Ultimately, the work contributes towards establishing multiscale modeling capabilities to better understand and design novel DLC material solutions for various tribological applications.


Sign in / Sign up

Export Citation Format

Share Document