The Influence of Crystal Orientation on Vibration Characteristics of DD6 Nickel-Base Single Crystal superalloy Turbine Blade

2013 ◽  
Vol 23 (2) ◽  
pp. 372-377 ◽  
Author(s):  
Zhixun Wen ◽  
Huanze Mao ◽  
Zhufeng Yue ◽  
Baizhi Wang
JOM ◽  
2010 ◽  
Vol 62 (5) ◽  
pp. 30-34 ◽  
Author(s):  
Dong Pan ◽  
Qingyan Xu ◽  
Baicheng Liu ◽  
Jiarong Li ◽  
Hailong Yuan ◽  
...  

2011 ◽  
Vol 509 (40) ◽  
pp. 9645-9649 ◽  
Author(s):  
X.B. Zhao ◽  
L. Liu ◽  
C.B. Yang ◽  
Y.F. Li ◽  
J. Zhang ◽  
...  

2021 ◽  
pp. 109737
Author(s):  
Hai-Qing Pei ◽  
Meng Li ◽  
Ping Wang ◽  
Xiao-Hu Yao ◽  
Zhi-Xun Wen ◽  
...  

2015 ◽  
Vol 636 ◽  
pp. 608-612 ◽  
Author(s):  
Xinhong Xiong ◽  
Dunmiao Quan ◽  
Pengdan Dai ◽  
Zhiping Wang ◽  
Qiaoxin Zhang ◽  
...  

Author(s):  
Piao Li ◽  
Wen Jiang ◽  
Shao-Shi Rui ◽  
Wei-xing Yao ◽  
Hui-ji Shi ◽  
...  

2015 ◽  
Vol 750 ◽  
pp. 139-144 ◽  
Author(s):  
De Long Shu ◽  
Su Gui Tian ◽  
Xin Ding ◽  
Jing Wu ◽  
Qiu Yang Li ◽  
...  

By means of heat treatment and creep property measurement, an investigation has made into the creep behaviors of a containing 4.5% Re nickel-base single crystal superalloy at high temperature. Results show that the elements W, Mo and Re are enriched in the dendrite arm regions, the elements Al, Ta, Cr and Co are enriched in the inter-dendrite region, and the segregation extent of the elements may be obviously reduced by means of heat treatment at high temperature. In the temperature ranges of 1070--1100 °C, the 4.5% Re single crystal nickel-based superallloy displays a better creep resistance and longer creep life. The deformation mechanism of the alloy during steady state creep is dislocations slipping in the γ matrix and climbing over the rafted γ′ phase. In the later stage of creep, the deformation mechanism of alloy is dislocations slipping in the γ matrix, and shearing into the rafted γ′ phase, which may promote the initiation and propagation of the micro-cracks at the interfaces of γ/γ′ phases up to the occurrence of creep fracture.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3315
Author(s):  
Liuxi Cai ◽  
Yao He ◽  
Shunsen Wang ◽  
Yun Li ◽  
Fang Li

Based on the establishment of the original and improved models of the turbine blade, a thermal–fluid–solid coupling method and a finite element method were employed to analyze the internal and external flow, temperature, and thermal stress of the turbine blade. The uneven temperature field, the thermal stress distribution characteristics of the composite cooling turbine blade under the service conditions, and the effect of the thickness of the thermal barrier coating (TBC) on the temperature and thermal stress distributions were obtained. The results show that the method proposed in this paper can better predict the ablation and thermal stress damage of turbine blades. The thermal stress of the blade is closely related to the temperature gradient and local geometric structure of the blade. The inlet area of the pressure side-platform of the blade, the large curvature region of the pressure tip of the blade, and the rounding between the blade body and the platform on the back of the blade are easily damaged by thermal stress. Cooling structure optimization and thicker TBC thickness can effectively reduce the high temperature and temperature gradient on the surface and inside of the turbine blade, thereby reducing the local high thermal stress.


Sign in / Sign up

Export Citation Format

Share Document